Cargando…

Effects of Annealing Temperature on the Crystal Structure, Morphology, and Optical Properties of Peroxo-Titanate Nanotubes Prepared by Peroxo-Titanium Complex Ion

This study addresses the effects of annealing temperatures (up to 500 °C) on the crystal structure, morphology, and optical properties of peroxo groups (–O–O–) containing titanate nanotubes (PTNTs). PTNTs, which possess a unique tubular morphology of layered-compound-like hydrogen titanate structure...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Hyunsu, Goto, Tomoyo, Cho, Sunghun, Lee, Soo Wohn, Kakihana, Masato, Sekino, Tohru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407109/
https://www.ncbi.nlm.nih.gov/pubmed/32650557
http://dx.doi.org/10.3390/nano10071331
Descripción
Sumario:This study addresses the effects of annealing temperatures (up to 500 °C) on the crystal structure, morphology, and optical properties of peroxo groups (–O–O–) containing titanate nanotubes (PTNTs). PTNTs, which possess a unique tubular morphology of layered-compound-like hydrogen titanate structure (approximately 10 nm in diameter), were synthesized using peroxo-titanium (Ti–O–O) complex ions as a precursor under very mild conditions—temperature of 100 °C and alkali concentration of 1.5 M—in the precursor solution. The nanotubular structure was dismantled by annealing and a nanoplate-like structure within the range of 20–50 nm in width and 100–300 nm in length was formed at 500 °C via a nanosheet structure by decreasing the specific surface area. Hydrogen titanate-based structures of the as-synthesized PTNTs transformed directly into anatase-type TiO(2) at a temperature above 360 °C due to dehydration and phase transition. The final product, anatase-based titania nanoplate, was partially hydrogen titanate crystal in nature, in which hydroxyl (–OH) bonds exist in their interlayers. Therefore, the use of Ti–O–O complex ions contributes to the improved thermal stability of hydrogen titanate nanotubes. These results show a simple and environmentally friendly method that is useful for the synthesis of functional nanomaterials for applications in various fields.