Cargando…

Quadrature Squeezing and Geometric-Phase Oscillations in Nano-Optics

The geometric phase, as well as the familiar dynamical phase, occurs in the evolution of a squeezed state in nano-optics as an extra phase. The outcome of the geometric phase in that state is somewhat intricate: its time behavior exhibits a combination of a linear increase and periodic oscillations....

Descripción completa

Detalles Bibliográficos
Autor principal: Choi, Jeong Ryeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407131/
https://www.ncbi.nlm.nih.gov/pubmed/32708993
http://dx.doi.org/10.3390/nano10071391
Descripción
Sumario:The geometric phase, as well as the familiar dynamical phase, occurs in the evolution of a squeezed state in nano-optics as an extra phase. The outcome of the geometric phase in that state is somewhat intricate: its time behavior exhibits a combination of a linear increase and periodic oscillations. We focus in this work on the periodic oscillations of the geometric phase, which are novel and interesting. We confirm that such oscillations are due purely to the effects of squeezing in the quantum states, whereas the oscillation disappears when we remove the squeezing. As the degree of squeezing increases in q-quadrature, the amplitude of the geometric-phase oscillation becomes large. This implies that we can adjust the strength of such an oscillation by tuning the squeezing parameters. We also investigate geometric-phase oscillations for the case of a more general optical phenomenon where the squeezed state undergoes one-photon processes. It is shown that the geometric phase in this case exhibits additional intricate oscillations with small amplitudes, besides the principal oscillation. Such a sub-oscillation exhibits a beating-like behavior in time. The effects of geometric-phase oscillations are crucial in a wide range of wave interferences which are accompanied by rich physical phenomena such as Aharonov–Bohm oscillations, conductance fluctuations, antilocalizations, and nondissipative current flows.