Cargando…
TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells
Mechanical loading and inflammation interact to cause degenerative disc disease and low back pain (LBP). However, the underlying mechanosensing and mechanotransductive pathways are poorly understood. This results in untargeted pharmacological treatments that do not take the mechanical aspect of LBP...
Autores principales: | Cambria, Elena, Arlt, Matthias J. E., Wandel, Sandra, Krupkova, Olga, Hitzl, Wolfgang, Passini, Fabian S., Hausmann, Oliver N., Snedeker, Jess G., Ferguson, Stephen J., Wuertz-Kozak, Karin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407144/ https://www.ncbi.nlm.nih.gov/pubmed/32708074 http://dx.doi.org/10.3390/cells9071736 |
Ejemplares similares
-
TRPV4 mediates cell damage induced by hyperphysiological compression and regulates COX2/PGE2 in intervertebral discs
por: Cambria, Elena, et al.
Publicado: (2021) -
Feasibility of the annulus fibrosus repair with in situ gelating hydrogels – A biomechanical study
por: Scheibler, Anne-Gita, et al.
Publicado: (2018) -
Annulus fibrosus cell sheets limit disc degeneration in a rat annulus fibrosus injury model
por: Nukaga, Tadashi, et al.
Publicado: (2019) -
TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair
por: Wei, Qiang, et al.
Publicado: (2022) -
The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies
por: Krupkova, Olga, et al.
Publicado: (2018)