Cargando…
Genomic data imputation with variational auto-encoders
BACKGROUND: As missing values are frequently present in genomic data, practical methods to handle missing data are necessary for downstream analyses that require complete data sets. State-of-the-art imputation techniques, including methods based on singular value decomposition and K-nearest neighbor...
Autores principales: | Qiu, Yeping Lina, Zheng, Hong, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407276/ https://www.ncbi.nlm.nih.gov/pubmed/32761097 http://dx.doi.org/10.1093/gigascience/giaa082 |
Ejemplares similares
-
Imputation method for single-cell RNA-seq data using neural topic model
por: Qi, Yueyang, et al.
Publicado: (2023) -
Highly accurate whole-genome imputation of SARS-CoV-2 from partial or low-quality sequences
por: Ortuño, Francisco M, et al.
Publicado: (2021) -
Comparison of atlas-based auto-segmentation accuracy for radiotherapy in prostate cancer
por: Aoyama, Takahiro, et al.
Publicado: (2021) -
Arthroscopic Medial Meniscus Posterior Root Reconstruction Using Auto-Gracilis Tendon
por: Lee, Dhong Won, et al.
Publicado: (2017) -
A meta-learning approach for genomic survival analysis
por: Qiu, Yeping Lina, et al.
Publicado: (2020)