Cargando…
Marked Difference in the Conformational Transition of DNA Caused by Propanol Isomer
We measured the changes in the higher-order structure of DNA molecules (λ phage DNA, 48 kbp) at different concentrations of 1- and 2-propanol through single-molecular observation. It is known that 2-propanol is usually adapted for the procedure to isolate genomic DNA from living cells/organs in cont...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407297/ https://www.ncbi.nlm.nih.gov/pubmed/32707704 http://dx.doi.org/10.3390/polym12071607 |
Sumario: | We measured the changes in the higher-order structure of DNA molecules (λ phage DNA, 48 kbp) at different concentrations of 1- and 2-propanol through single-molecular observation. It is known that 2-propanol is usually adapted for the procedure to isolate genomic DNA from living cells/organs in contrast to 1-propanol. In the present study, it was found that with an increasing concentration of 1-propanol, DNA exhibits reentrant conformational transitions from an elongated coil to a folded globule, and then to an unfolded state. On the other hand, with 2-propanol, DNA exhibits monotonous shrinkage into a compact state. Stretching experiments under direct current (DC) electrical potential revealed that single DNA molecules intermediately shrunk by 1- and 2-propanol exhibit intrachain phase segregation, i.e., coexistence of elongated and compact parts. The characteristic effect of 1-propanol causing the reentrant transition is argued in terms of the generation of water-rich nanoclusters. |
---|