Cargando…

Tribological Behaviour of Additively Manufactured Fiber-Reinforced Thermoplastic Composites in Various Environments

Polymer composites with increased utility properties are becoming competition for conventional materials, in conjunction with additive manufacturing techniques. The aim of this study was to evaluate tribological characteristics of fibrous composites produced in fused deposition modeling (FDM) with t...

Descripción completa

Detalles Bibliográficos
Autores principales: Prusinowski, Artur, Kaczyński, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407409/
https://www.ncbi.nlm.nih.gov/pubmed/32668768
http://dx.doi.org/10.3390/polym12071551
Descripción
Sumario:Polymer composites with increased utility properties are becoming competition for conventional materials, in conjunction with additive manufacturing techniques. The aim of this study was to evaluate tribological characteristics of fibrous composites produced in fused deposition modeling (FDM) with the use of an innovative head with symmetrical feeding of the matrix material. Analysis of the influence of composite-forming temperature on their tribological properties allowed the determining of the optimal printing process parameters for this group of composites. Significant differences in the friction process of the same reinforced materials were observed in dry and wet environments. Fibrous composites showed 10 times lower wear intensity as well as two times lower friction value in water than in air. Research shows friction in the water environment ensures more even wear of the surface of the composites involved in the work. The article contains 3D microscopic imaging of the friction plane of the tested composites and a description of a typical course of material wear is described.