Cargando…
Generative Model for Proposing Drug Candidates Satisfying Anticancer Properties Using a Conditional Variational Autoencoder
[Image: see text] Deep learning-based molecular generative models have successfully identified drug candidates with desired properties against biological targets of interest. However, syntactically invalid molecules generated from a deep learning-generated model hinder the model from being applied t...
Autores principales: | Joo, Sunghoon, Kim, Min Soo, Yang, Jaeho, Park, Jeahyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407547/ https://www.ncbi.nlm.nih.gov/pubmed/32775866 http://dx.doi.org/10.1021/acsomega.0c01149 |
Ejemplares similares
-
Anomaly Detection With Conditional Variational Autoencoders
por: Pol, Adrian Alan, et al.
Publicado: (2020) -
Variational Autoencoder for Generation of Antimicrobial
Peptides
por: Dean, Scott N., et al.
Publicado: (2020) -
Generating functional protein variants with variational autoencoders
por: Hawkins-Hooker, Alex, et al.
Publicado: (2021) -
Molecular generative model based on conditional variational autoencoder for de novo molecular design
por: Lim, Jaechang, et al.
Publicado: (2018) -
Variation and oscillation for the multilinear singular integrals satisfying Hörmander type conditions
por: Xia, Yinhong
Publicado: (2018)