Cargando…
Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites
From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407558/ https://www.ncbi.nlm.nih.gov/pubmed/32708367 http://dx.doi.org/10.3390/polym12071596 |
_version_ | 1783567650412036096 |
---|---|
author | Valentini, Luca Bittolo Bon, Silvia Giorgi, Giacomo |
author_facet | Valentini, Luca Bittolo Bon, Silvia Giorgi, Giacomo |
author_sort | Valentini, Luca |
collection | PubMed |
description | From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, therefore, developing an electric field induced by the heterostructure formation. Experiments on GO polymer composite film supports the theoretical findings, showing that the interaction with water aerosol generates a voltage output signal of up to −2 V. We then developed an electrostatic composite fiber by the coagulation method mixing GO with poly(methyl methacrylate) (PMMA). These findings could be used to design protective fabrics with antiviral activity against negatively charged spike proteins of airborne viruses. |
format | Online Article Text |
id | pubmed-7407558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74075582020-08-25 Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites Valentini, Luca Bittolo Bon, Silvia Giorgi, Giacomo Polymers (Basel) Article From the global spread of COVID-19 we learned that SARS-CoV-2 virus can be transmitted via respiratory liquid droplets. In this study, we performed first-principles calculations suggesting that water molecules once in contact with the graphene oxide (GO) layer interact with its functional groups, therefore, developing an electric field induced by the heterostructure formation. Experiments on GO polymer composite film supports the theoretical findings, showing that the interaction with water aerosol generates a voltage output signal of up to −2 V. We then developed an electrostatic composite fiber by the coagulation method mixing GO with poly(methyl methacrylate) (PMMA). These findings could be used to design protective fabrics with antiviral activity against negatively charged spike proteins of airborne viruses. MDPI 2020-07-18 /pmc/articles/PMC7407558/ /pubmed/32708367 http://dx.doi.org/10.3390/polym12071596 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Valentini, Luca Bittolo Bon, Silvia Giorgi, Giacomo Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title | Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title_full | Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title_fullStr | Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title_full_unstemmed | Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title_short | Engineering Graphene Oxide/Water Interface from First Principles to Experiments for Electrostatic Protective Composites |
title_sort | engineering graphene oxide/water interface from first principles to experiments for electrostatic protective composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407558/ https://www.ncbi.nlm.nih.gov/pubmed/32708367 http://dx.doi.org/10.3390/polym12071596 |
work_keys_str_mv | AT valentiniluca engineeringgrapheneoxidewaterinterfacefromfirstprinciplestoexperimentsforelectrostaticprotectivecomposites AT bittolobonsilvia engineeringgrapheneoxidewaterinterfacefromfirstprinciplestoexperimentsforelectrostaticprotectivecomposites AT giorgigiacomo engineeringgrapheneoxidewaterinterfacefromfirstprinciplestoexperimentsforelectrostaticprotectivecomposites |