Cargando…
hcapca: Automated Hierarchical Clustering and Principal Component Analysis of Large Metabolomic Datasets in R
Microbial natural product discovery programs face two main challenges today: rapidly prioritizing strains for discovering new molecules and avoiding the rediscovery of already known molecules. Typically, these problems have been tackled using biological assays to identify promising strains and techn...
Autores principales: | Chanana, Shaurya, Thomas, Chris S., Zhang, Fan, Rajski, Scott R., Bugni, Tim S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407629/ https://www.ncbi.nlm.nih.gov/pubmed/32708222 http://dx.doi.org/10.3390/metabo10070297 |
Ejemplares similares
-
Natural Product Discovery Using Planes of Principal Component Analysis in R (PoPCAR)
por: Chanana, Shaurya, et al.
Publicado: (2017) -
Draft Genome Sequence of Pseudenhygromyxa sp. Strain WMMC2535, a Marine Ascidian-Associated Bacterium
por: Chanana, Shaurya, et al.
Publicado: (2020) -
CLUSFAVOR 5.0: hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles
por: Peterson, Leif E
Publicado: (2002) -
Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis
por: Fernández-Arjona, María del Mar, et al.
Publicado: (2017) -
Pattern Recognition for Steam Flooding Field Applications
Based on Hierarchical Clustering and Principal Component Analysis
por: Zhang, Na, et al.
Publicado: (2022)