Cargando…
PMMA-TiO(2) Fibers for the Photocatalytic Degradation of Water Pollutants
Titanium dioxide (TiO(2)) is a promising photocatalyst that possesses a redox potential suitable for environmental remediation applications. A low photocatalytic yield and high cost have thus far limited the commercial adoption of TiO(2)-based fixed-bed reactors. One solution is to engineer the phys...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407631/ https://www.ncbi.nlm.nih.gov/pubmed/32629803 http://dx.doi.org/10.3390/nano10071279 |
Sumario: | Titanium dioxide (TiO(2)) is a promising photocatalyst that possesses a redox potential suitable for environmental remediation applications. A low photocatalytic yield and high cost have thus far limited the commercial adoption of TiO(2)-based fixed-bed reactors. One solution is to engineer the physical geometry or chemical composition of the substrate to overcome these limitations. In this work, porous polymethyl methacrylate (PMMA) substrates with immobilized TiO(2) nanoparticles in fiber forms were fabricated and analyzed to demonstrate the influence of contaminant transport and light accessibility on the overall photocatalytic performance. The influences of (i) fiber porosity and (ii) fiber architecture on the overall photocatalytic performance were investigated. The porous structure was fabricated using wet phase inversion. The core-shell-structured fibers exhibited much higher mechanical properties than the porous fibers (7.52 GPa vs. non-testability) and maintained the same degradation rates as porous structures (0.059 vs. 0.053/min) in removing methylene blue with comparable specific surface areas. The highest methylene blue (MB) degradation rate (k(MB)) of 0.116 min(−1) was observed due to increases of the exposed surface area, pointing to more efficient photocatalysis by optimizing core-shell dimensions. This research provides an easy-to-manufacture and cost-efficient method for producing PMMA/TiO(2) core-shell fibers with a broad application in water treatment, air purification, and volatile sensors. |
---|