Cargando…
Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets
Porous ZnO sheets containing various degrees of a nanoscaled pore were successfully synthesized using a simple hydrothermal method and various postannealing procedures. The porosity features of the ZnO sheets can be easily tuned by changing both the annealing temperature and annealing atmosphere. Th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407819/ https://www.ncbi.nlm.nih.gov/pubmed/32664463 http://dx.doi.org/10.3390/nano10071352 |
_version_ | 1783567692498731008 |
---|---|
author | Liang, Yuan-Chang Hung, Chen-Shiang Zhao, Wei-Cheng |
author_facet | Liang, Yuan-Chang Hung, Chen-Shiang Zhao, Wei-Cheng |
author_sort | Liang, Yuan-Chang |
collection | PubMed |
description | Porous ZnO sheets containing various degrees of a nanoscaled pore were successfully synthesized using a simple hydrothermal method and various postannealing procedures. The porosity features of the ZnO sheets can be easily tuned by changing both the annealing temperature and annealing atmosphere. The dense porous nature of ZnO sheets is beneficial to enhance light absorption. Moreover, the substantially increased oxygen vacancies in the ZnO sheets were observed especially after the hydrogen treatment as revealed in the X-ray photoelectron spectroscope and photoluminescence analyses. The high density of surface crystal defect enhanced the photoinduced electron-hole separation rate of the ZnO sheets, which is crucial for an improved photoactivity. The porous ZnO sheets formed at a hydrogen atmosphere exhibited superior photoactive performance than the porous ZnO sheets formed at the high-temperature ambient air annealing. The dense pores and massive crystal defects formed by a hydrogen atmosphere annealing in the ZnO crystals might account for the observed photoactive behaviors in this study. |
format | Online Article Text |
id | pubmed-7407819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74078192020-08-12 Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets Liang, Yuan-Chang Hung, Chen-Shiang Zhao, Wei-Cheng Nanomaterials (Basel) Article Porous ZnO sheets containing various degrees of a nanoscaled pore were successfully synthesized using a simple hydrothermal method and various postannealing procedures. The porosity features of the ZnO sheets can be easily tuned by changing both the annealing temperature and annealing atmosphere. The dense porous nature of ZnO sheets is beneficial to enhance light absorption. Moreover, the substantially increased oxygen vacancies in the ZnO sheets were observed especially after the hydrogen treatment as revealed in the X-ray photoelectron spectroscope and photoluminescence analyses. The high density of surface crystal defect enhanced the photoinduced electron-hole separation rate of the ZnO sheets, which is crucial for an improved photoactivity. The porous ZnO sheets formed at a hydrogen atmosphere exhibited superior photoactive performance than the porous ZnO sheets formed at the high-temperature ambient air annealing. The dense pores and massive crystal defects formed by a hydrogen atmosphere annealing in the ZnO crystals might account for the observed photoactive behaviors in this study. MDPI 2020-07-11 /pmc/articles/PMC7407819/ /pubmed/32664463 http://dx.doi.org/10.3390/nano10071352 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liang, Yuan-Chang Hung, Chen-Shiang Zhao, Wei-Cheng Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title | Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title_full | Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title_fullStr | Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title_full_unstemmed | Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title_short | Thermal Annealing Induced Controllable Porosity and Photoactive Performance of 2D ZnO Sheets |
title_sort | thermal annealing induced controllable porosity and photoactive performance of 2d zno sheets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407819/ https://www.ncbi.nlm.nih.gov/pubmed/32664463 http://dx.doi.org/10.3390/nano10071352 |
work_keys_str_mv | AT liangyuanchang thermalannealinginducedcontrollableporosityandphotoactiveperformanceof2dznosheets AT hungchenshiang thermalannealinginducedcontrollableporosityandphotoactiveperformanceof2dznosheets AT zhaoweicheng thermalannealinginducedcontrollableporosityandphotoactiveperformanceof2dznosheets |