Cargando…
Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview
A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408016/ https://www.ncbi.nlm.nih.gov/pubmed/32708475 http://dx.doi.org/10.3390/polym12071601 |
_version_ | 1783567739717156864 |
---|---|
author | da Luz, Fernanda Santos Garcia Filho, Fabio da Costa del-Río, Maria Teresa Gómez Nascimento, Lucio Fabio Cassiano Pinheiro, Wagner Anacleto Monteiro, Sergio Neves |
author_facet | da Luz, Fernanda Santos Garcia Filho, Fabio da Costa del-Río, Maria Teresa Gómez Nascimento, Lucio Fabio Cassiano Pinheiro, Wagner Anacleto Monteiro, Sergio Neves |
author_sort | da Luz, Fernanda Santos |
collection | PubMed |
description | A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are effectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young’s modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites. |
format | Online Article Text |
id | pubmed-7408016 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74080162020-08-12 Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview da Luz, Fernanda Santos Garcia Filho, Fabio da Costa del-Río, Maria Teresa Gómez Nascimento, Lucio Fabio Cassiano Pinheiro, Wagner Anacleto Monteiro, Sergio Neves Polymers (Basel) Review A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are effectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young’s modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites. MDPI 2020-07-18 /pmc/articles/PMC7408016/ /pubmed/32708475 http://dx.doi.org/10.3390/polym12071601 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review da Luz, Fernanda Santos Garcia Filho, Fabio da Costa del-Río, Maria Teresa Gómez Nascimento, Lucio Fabio Cassiano Pinheiro, Wagner Anacleto Monteiro, Sergio Neves Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title | Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title_full | Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title_fullStr | Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title_full_unstemmed | Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title_short | Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview |
title_sort | graphene-incorporated natural fiber polymer composites: a first overview |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408016/ https://www.ncbi.nlm.nih.gov/pubmed/32708475 http://dx.doi.org/10.3390/polym12071601 |
work_keys_str_mv | AT daluzfernandasantos grapheneincorporatednaturalfiberpolymercompositesafirstoverview AT garciafilhofabiodacosta grapheneincorporatednaturalfiberpolymercompositesafirstoverview AT delriomariateresagomez grapheneincorporatednaturalfiberpolymercompositesafirstoverview AT nascimentoluciofabiocassiano grapheneincorporatednaturalfiberpolymercompositesafirstoverview AT pinheirowagneranacleto grapheneincorporatednaturalfiberpolymercompositesafirstoverview AT monteirosergioneves grapheneincorporatednaturalfiberpolymercompositesafirstoverview |