Cargando…

Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation

Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinelli, Carolina, Gabriele, Fabio, Dini, Elena, Carriero, Francesca, Bresciani, Giorgia, Slivinschi, Bianca, Dei Giudici, Marco, Zanoletti, Lisa, Manai, Federico, Paolillo, Mayra, Schinelli, Sergio, Azzalin, Alberto, Comincini, Sergio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408059/
https://www.ncbi.nlm.nih.gov/pubmed/32640653
http://dx.doi.org/10.3390/cells9071626
_version_ 1783567749879955456
author Martinelli, Carolina
Gabriele, Fabio
Dini, Elena
Carriero, Francesca
Bresciani, Giorgia
Slivinschi, Bianca
Dei Giudici, Marco
Zanoletti, Lisa
Manai, Federico
Paolillo, Mayra
Schinelli, Sergio
Azzalin, Alberto
Comincini, Sergio
author_facet Martinelli, Carolina
Gabriele, Fabio
Dini, Elena
Carriero, Francesca
Bresciani, Giorgia
Slivinschi, Bianca
Dei Giudici, Marco
Zanoletti, Lisa
Manai, Federico
Paolillo, Mayra
Schinelli, Sergio
Azzalin, Alberto
Comincini, Sergio
author_sort Martinelli, Carolina
collection PubMed
description Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts.
format Online
Article
Text
id pubmed-7408059
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74080592020-08-25 Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation Martinelli, Carolina Gabriele, Fabio Dini, Elena Carriero, Francesca Bresciani, Giorgia Slivinschi, Bianca Dei Giudici, Marco Zanoletti, Lisa Manai, Federico Paolillo, Mayra Schinelli, Sergio Azzalin, Alberto Comincini, Sergio Cells Article Extracellular vesicles (EVs) are considered as promising nanoparticle theranostic tools in many pathological contexts. The increasing clinical employment of therapeutic nanoparticles is contributing to the development of a new research area related to the design of artificial EVs. To this aim, different approaches have been described to develop mimetic biologically functional nanovescicles. In this paper, we suggest a simplified procedure to generate plasma membrane-derived nanovesicles with the possibility to efficiently encapsulate different drugs during their spontaneously assembly. After physical and molecular characterization by Tunable Resistive Pulse Sensing (TRPS) technology, transmission electron microscopy, and flow cytometry, as a proof of principle, we have loaded into mimetic EVs the isoquinoline alkaloid Berberine chloride and the chemotherapy compounds Temozolomide or Givinostat. We demonstrated the fully functionality of these nanoparticles in drug encapsulation and cell delivery, showing, in particular, a similar cytotoxic effect of direct cell culture administration of the anticancer drugs. In conclusion, we have documented the possibility to easily generate scalable nanovesicles with specific therapeutic cargo modifications useful in different drug delivery contexts. MDPI 2020-07-06 /pmc/articles/PMC7408059/ /pubmed/32640653 http://dx.doi.org/10.3390/cells9071626 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Martinelli, Carolina
Gabriele, Fabio
Dini, Elena
Carriero, Francesca
Bresciani, Giorgia
Slivinschi, Bianca
Dei Giudici, Marco
Zanoletti, Lisa
Manai, Federico
Paolillo, Mayra
Schinelli, Sergio
Azzalin, Alberto
Comincini, Sergio
Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title_full Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title_fullStr Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title_full_unstemmed Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title_short Development of Artificial Plasma Membranes Derived Nanovesicles Suitable for Drugs Encapsulation
title_sort development of artificial plasma membranes derived nanovesicles suitable for drugs encapsulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408059/
https://www.ncbi.nlm.nih.gov/pubmed/32640653
http://dx.doi.org/10.3390/cells9071626
work_keys_str_mv AT martinellicarolina developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT gabrielefabio developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT dinielena developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT carrierofrancesca developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT brescianigiorgia developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT slivinschibianca developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT deigiudicimarco developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT zanolettilisa developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT manaifederico developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT paolillomayra developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT schinellisergio developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT azzalinalberto developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation
AT comincinisergio developmentofartificialplasmamembranesderivednanovesiclessuitablefordrugsencapsulation