Cargando…

Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer—Optimization of the Affinity towards PSMA by Linker Modification in Murine Model

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are promising targets for molecular imaging of prostate cancer (PCa) lesions. Due to the heterogenic overexpression of PSMA and GRPR in PCa, a heterodimeric radiotracer with the ability to bind to both targets co...

Descripción completa

Detalles Bibliográficos
Autores principales: Lundmark, Fanny, Abouzayed, Ayman, Mitran, Bogdan, Rinne, Sara S., Varasteh, Zohreh, Larhed, Mats, Tolmachev, Vladimir, Rosenström, Ulrika, Orlova, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408065/
https://www.ncbi.nlm.nih.gov/pubmed/32630176
http://dx.doi.org/10.3390/pharmaceutics12070614
Descripción
Sumario:Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are promising targets for molecular imaging of prostate cancer (PCa) lesions. Due to the heterogenic overexpression of PSMA and GRPR in PCa, a heterodimeric radiotracer with the ability to bind to both targets could be beneficial. Recently, our group reported the novel heterodimer BQ7800 consisting of a urea-based PSMA inhibitor, the peptide-based GRPR antagonist RM26 and NOTA chelator. The study reported herein, aimed to improve the affinity of BQ7800 towards PSMA by changing the composition of the two linkers connecting the PSMA- and GRPR-targeting motifs. Three novel heterodimeric analogues were synthesized by incorporation of phenylalanine in the functional linker of the PSMA-binding motif and/or shortening the PEG-linker coupled to RM26. The heterodimers were labeled with indium-111 and evaluated in vitro. In the competitive binding assay, BQ7812, featuring phenylalanine and shorter PEG-linker, demonstrated a nine-fold improved affinity towards PSMA. In the in vivo biodistribution study of [(111)In]In-BQ7812 in PC3-pip tumor-bearing mice (PSMA and GRPR positive), the activity uptake was two-fold higher in the tumor and three-fold higher in kidneys than for [(111)In]In-BQ7800. Herein, we showed that the affinity of a bispecific PSMA/GRPR heterodimer towards PSMA could be improved by linker modification.