Cargando…

Protective Effects of Bee Venom against Endotoxemia-Related Acute Kidney Injury in Mice

Sepsis-associated acute kidney injury (AKI) is a leading cause of death in hospitalized patients worldwide. Despite decades of effort, there is no effective treatment for preventing the serious medical condition. Bee venom has long been used to treat a variety of inflammatory diseases. However, whet...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jung-Yeon, Lee, Sun-Jae, Maeng, Young-In, Leem, Jaechan, Park, Kwan-Kyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408099/
https://www.ncbi.nlm.nih.gov/pubmed/32640615
http://dx.doi.org/10.3390/biology9070154
Descripción
Sumario:Sepsis-associated acute kidney injury (AKI) is a leading cause of death in hospitalized patients worldwide. Despite decades of effort, there is no effective treatment for preventing the serious medical condition. Bee venom has long been used to treat a variety of inflammatory diseases. However, whether bee venom has protective effects against lipopolysaccharide (LPS)-induced AKI has not been explored. The aim of this study was to evaluate the effects of bee venom on LPS-induced AKI. The administration of bee venom alleviated renal dysfunction and structural injury in LPS-treated mice. Increased renal levels of tubular injury markers after LPS treatment were also suppressed by bee venom. Mechanistically, bee venom significantly reduced plasma and tissue levels of inflammatory cytokines and immune cell infiltration into damaged kidneys. In addition, mice treated with bee venom exhibited reduced renal expression of lipid peroxidation markers after LPS injection. Moreover, bee venom attenuated tubular cell apoptosis in the kidneys of LPS-treated mice. In conclusion, these results suggest that bee venom attenuates LPS-induced renal dysfunction and structural injury via the suppression of inflammation, oxidative stress, and tubular cell apoptosis, and might be a useful therapeutic option for preventing endotoxemia-related AKI.