Cargando…

Mussel-Inspired Magnetic Nanoflowers as an Effective Nanozyme and Antimicrobial Agent for Biosensing and Catalytic Reduction of Organic Dyes

[Image: see text] Mussel-inspired chemistry has been embodied as a method for acquiring multifunctional nanostructures. In this research, a novel mussel-inspired magnetic nanoflower was prepared through a mussel-inspired approach. Herein, magnetic PDA–Cu nanoflowers (NFs) were assembled via incorpor...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohammad, Mahsa, Ahmadpoor, Fatemeh, Shojaosadati, Seyed Abbas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408242/
https://www.ncbi.nlm.nih.gov/pubmed/32775878
http://dx.doi.org/10.1021/acsomega.0c01864
Descripción
Sumario:[Image: see text] Mussel-inspired chemistry has been embodied as a method for acquiring multifunctional nanostructures. In this research, a novel mussel-inspired magnetic nanoflower was prepared through a mussel-inspired approach. Herein, magnetic PDA–Cu nanoflowers (NFs) were assembled via incorporating magnetic Fe(3)O(4)@SiO(2)–NH(2) core/shell nanoparticles (NPs) into mussel-inspired polydopamine (PDA) and copper phosphate as the organic and inorganic portions, respectively. Accordingly, the flower-like morphology of MNPs PDA–Cu NFs was characterized by scanning electron microscopy (SEM) images. X-ray diffraction (XRD) analysis confirmed the crystalline structure of magnetic nanoparticles (MNPs) and copper phosphate. Vibrating sample magnetometer (VSM) data revealed the superparamagnetic behavior of MNPs (40.5 emu/g) and MNPs PDA–Cu NFs (35.4 emu/g). Catalytic reduction of MNPs PDA–Cu NFs was evaluated through degradation of methylene blue (MB). The reduction of MB pursued the Langmuir–Hinshelwood mechanism and first-order kinetics, in which the apparent reduction rate K(app) of MB was higher than 1.44 min(–1) and the dye degradation ability was 100%. MNPs PDA–Cu NFs also showed outstanding recyclability and reduction efficiency, for at least six cycles. Furthermore, the prepared MNPs PDA–Cu NFs demonstrated a peroxidase-like catalytic activity for catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) to a blue oxidized TMB (oxTMB) solution in the presence of H(2)O(2). Antimicrobial assays for MNPs PDA–Cu and PDA–Cu NFs were conducted on both Gram-negative and Gram-positive bacteria. Moreover, we demonstrated how the existence of magnetic nanoparticles in PDA–Cu NFs influences the inhibition of an increasing zone. Based on the results, mussel-inspired magnetic nanoflowers appear to have great potential applications, including those relevant to biological, catalysis, and environmental research.