Cargando…
Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach
Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408287/ https://www.ncbi.nlm.nih.gov/pubmed/32605039 http://dx.doi.org/10.3390/pharmaceutics12070598 |
_version_ | 1783567802891763712 |
---|---|
author | H. Aodah, Alhussain H. Fayed, Mohamed Alalaiwe, Ahmed B. Alsulays, Bader F. Aldawsari, Mohammed Khafagy, El-Sayed |
author_facet | H. Aodah, Alhussain H. Fayed, Mohamed Alalaiwe, Ahmed B. Alsulays, Bader F. Aldawsari, Mohammed Khafagy, El-Sayed |
author_sort | H. Aodah, Alhussain |
collection | PubMed |
description | Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 3(2) full factorial design to elucidate the influence of water amount (X(1)) and the amount of pregelatinized starch (PGS; X(2)) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X(1) and X(2) had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients. |
format | Online Article Text |
id | pubmed-7408287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-74082872020-08-13 Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach H. Aodah, Alhussain H. Fayed, Mohamed Alalaiwe, Ahmed B. Alsulays, Bader F. Aldawsari, Mohammed Khafagy, El-Sayed Pharmaceutics Article Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 3(2) full factorial design to elucidate the influence of water amount (X(1)) and the amount of pregelatinized starch (PGS; X(2)) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X(1) and X(2) had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients. MDPI 2020-06-27 /pmc/articles/PMC7408287/ /pubmed/32605039 http://dx.doi.org/10.3390/pharmaceutics12070598 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article H. Aodah, Alhussain H. Fayed, Mohamed Alalaiwe, Ahmed B. Alsulays, Bader F. Aldawsari, Mohammed Khafagy, El-Sayed Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title | Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title_full | Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title_fullStr | Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title_full_unstemmed | Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title_short | Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach |
title_sort | design, optimization, and correlation of in vitro/in vivo disintegration of novel fast orally disintegrating tablet of high dose metformin hydrochloride using moisture activated dry granulation process and quality by design approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408287/ https://www.ncbi.nlm.nih.gov/pubmed/32605039 http://dx.doi.org/10.3390/pharmaceutics12070598 |
work_keys_str_mv | AT haodahalhussain designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach AT hfayedmohamed designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach AT alalaiweahmed designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach AT balsulaysbader designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach AT faldawsarimohammed designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach AT khafagyelsayed designoptimizationandcorrelationofinvitroinvivodisintegrationofnovelfastorallydisintegratingtabletofhighdosemetforminhydrochlorideusingmoistureactivateddrygranulationprocessandqualitybydesignapproach |