Cargando…
Feature Counting Under Dichoptic Viewing in Anisometropic and Strabismic Amblyopia
PURPOSE: While using their amblyopic eye, individuals with strabismic amblyopia count inaccurately and underestimate the number of features. These deficits are attributed to limitations in high-level cortical functions and attention. In the current study, we examined whether feature counting is affe...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408935/ https://www.ncbi.nlm.nih.gov/pubmed/32821510 http://dx.doi.org/10.1167/tvst.9.6.13 |
Sumario: | PURPOSE: While using their amblyopic eye, individuals with strabismic amblyopia count inaccurately and underestimate the number of features. These deficits are attributed to limitations in high-level cortical functions and attention. In the current study, we examined whether feature counting is affected in strabismic and anisometropic amblyopia during dichoptic viewing, a setup that can better capture binocular function disruptions. METHODS: Through a mirror stereoscope, Gabor patches were presented for 200 msec (Experiment 1) or 350 msec (Experiment 2) in both the left eye and the right eye of observers, who were required to combine the percepts and report the total number of patches. Counting performance and errors were compared across amblyopic groups and normal-sighted observers. The contribution and relation of each eye to performance was also evaluated. RESULTS: Anisometropic and strabismic amblyopia groups counted inaccurately and underestimated the number of features compared to the normal-sighted group. In both amblyopic groups, the amblyopic eye contributed less in comparison to the fellow eye. The strabismic group exhibited worse performance, and a more pronounced difference in eye contribution, in comparison to the anisometropic group. CONCLUSIONS: Overall, our results support the view of higher-level cortical and binocular function deficits in amblyopia. TRANSLATIONAL RELEVANCE: The current study bridges the gap between research on high-cortical function deficits and clinical binocular function disruptions in amblyopia, which can help us better understand the neural mechanism of amblyopia and inform clinical therapeutic tasks and strategies. |
---|