Cargando…
Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking
PURPOSE: To evaluate the riboflavin (RF) concentration and distribution in the corneal stroma and the risk for endothelial photodamage during corneal crosslinking (CXL) following 10- and 30-minute impregnation. METHODS: De-epithelialized rabbit corneas were subjected to impregnation for 10 and 30 mi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409014/ https://www.ncbi.nlm.nih.gov/pubmed/32821501 http://dx.doi.org/10.1167/tvst.9.6.4 |
_version_ | 1783567966010343424 |
---|---|
author | Marcovich, Arie L. Brekelmans, Jurriaan Brandis, Alexander Samish, Ilan Pinkas, Iddo Preise, Dina Sasson, Keren Feine, Ilan Goz, Alexandra Dickman, Mor M. Nuijts, Rudy M. M. A. Scherz, Avigdor |
author_facet | Marcovich, Arie L. Brekelmans, Jurriaan Brandis, Alexander Samish, Ilan Pinkas, Iddo Preise, Dina Sasson, Keren Feine, Ilan Goz, Alexandra Dickman, Mor M. Nuijts, Rudy M. M. A. Scherz, Avigdor |
author_sort | Marcovich, Arie L. |
collection | PubMed |
description | PURPOSE: To evaluate the riboflavin (RF) concentration and distribution in the corneal stroma and the risk for endothelial photodamage during corneal crosslinking (CXL) following 10- and 30-minute impregnation. METHODS: De-epithelialized rabbit corneas were subjected to impregnation for 10 and 30 minutes with different RF formulations. Human corneal endothelial cells (HCECs) were subjected to different RF concentrations and ultraviolet A (UVA) dosages. Assays included fluorescence imaging, absorption spectroscopy of corneal buttons and anterior chamber humor, and cell viability staining. RESULTS: After 10 and 30 minutes of impregnation, respectively, anterior chamber fluid showed an RF concentration of (1.6 ± 0.21)•10(−4)% and (5.4 ± 0.21)•10(−4)%, and trans-corneal absorption reported an average corneal RF concentration of 0.0266% and 0.0345%. This results in a decrease in endothelial RF concentration from 0.019% to 0.0056%, whereas endothelial UVA irradiance increases by 1.3-fold when changing from 30 to 10 minutes of impregnation. HCEC viability in cultures exposed to UVA illumination and RF concentrations as concluded for the endothelium after 10- and 30-minute impregnation was nonstatistically different at 51.0% ± 3.9 and 41.3 ± 5.0%, respectively. CONCLUSIONS: The risk for endothelial damage in CXL by RF/UVA treatment does not increase by shortened impregnation because the 30% increase in light intensity is accompanied by a 3.4-fold decrease of the RF concentration in the posterior stroma. This is substantiated by similar endothelial cell toxicity seen in vitro, which in fact appears to favor 10-minute impregnation. TRANSLATIONAL RELEVANCE: This study offers compelling arguments for (safely) shortening RF impregnation duration, reducing patients’ burden and costly operation room time. |
format | Online Article Text |
id | pubmed-7409014 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Association for Research in Vision and Ophthalmology |
record_format | MEDLINE/PubMed |
spelling | pubmed-74090142020-08-19 Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking Marcovich, Arie L. Brekelmans, Jurriaan Brandis, Alexander Samish, Ilan Pinkas, Iddo Preise, Dina Sasson, Keren Feine, Ilan Goz, Alexandra Dickman, Mor M. Nuijts, Rudy M. M. A. Scherz, Avigdor Transl Vis Sci Technol Article PURPOSE: To evaluate the riboflavin (RF) concentration and distribution in the corneal stroma and the risk for endothelial photodamage during corneal crosslinking (CXL) following 10- and 30-minute impregnation. METHODS: De-epithelialized rabbit corneas were subjected to impregnation for 10 and 30 minutes with different RF formulations. Human corneal endothelial cells (HCECs) were subjected to different RF concentrations and ultraviolet A (UVA) dosages. Assays included fluorescence imaging, absorption spectroscopy of corneal buttons and anterior chamber humor, and cell viability staining. RESULTS: After 10 and 30 minutes of impregnation, respectively, anterior chamber fluid showed an RF concentration of (1.6 ± 0.21)•10(−4)% and (5.4 ± 0.21)•10(−4)%, and trans-corneal absorption reported an average corneal RF concentration of 0.0266% and 0.0345%. This results in a decrease in endothelial RF concentration from 0.019% to 0.0056%, whereas endothelial UVA irradiance increases by 1.3-fold when changing from 30 to 10 minutes of impregnation. HCEC viability in cultures exposed to UVA illumination and RF concentrations as concluded for the endothelium after 10- and 30-minute impregnation was nonstatistically different at 51.0% ± 3.9 and 41.3 ± 5.0%, respectively. CONCLUSIONS: The risk for endothelial damage in CXL by RF/UVA treatment does not increase by shortened impregnation because the 30% increase in light intensity is accompanied by a 3.4-fold decrease of the RF concentration in the posterior stroma. This is substantiated by similar endothelial cell toxicity seen in vitro, which in fact appears to favor 10-minute impregnation. TRANSLATIONAL RELEVANCE: This study offers compelling arguments for (safely) shortening RF impregnation duration, reducing patients’ burden and costly operation room time. The Association for Research in Vision and Ophthalmology 2020-05-11 /pmc/articles/PMC7409014/ /pubmed/32821501 http://dx.doi.org/10.1167/tvst.9.6.4 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
spellingShingle | Article Marcovich, Arie L. Brekelmans, Jurriaan Brandis, Alexander Samish, Ilan Pinkas, Iddo Preise, Dina Sasson, Keren Feine, Ilan Goz, Alexandra Dickman, Mor M. Nuijts, Rudy M. M. A. Scherz, Avigdor Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title | Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title_full | Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title_fullStr | Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title_full_unstemmed | Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title_short | Decreased Riboflavin Impregnation Time Does Not Increase the Risk for Endothelial Phototoxicity During Corneal Cross-Linking |
title_sort | decreased riboflavin impregnation time does not increase the risk for endothelial phototoxicity during corneal cross-linking |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409014/ https://www.ncbi.nlm.nih.gov/pubmed/32821501 http://dx.doi.org/10.1167/tvst.9.6.4 |
work_keys_str_mv | AT marcovichariel decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT brekelmansjurriaan decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT brandisalexander decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT samishilan decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT pinkasiddo decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT preisedina decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT sassonkeren decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT feineilan decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT gozalexandra decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT dickmanmorm decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT nuijtsrudymma decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking AT scherzavigdor decreasedriboflavinimpregnationtimedoesnotincreasetheriskforendothelialphototoxicityduringcornealcrosslinking |