Cargando…

Maturational Changes Alter Effects of Dietary Phytase Supplementation on the Fecal Microbiome in Fattening Pigs

Age-related successions in the porcine gut microbiome may modify the microbial response to dietary changes. This may especially affect the bacterial response to essential nutrients for bacterial metabolism, such as phosphorus (P). Against this background, we used phytase supplementation (0 or 650 ph...

Descripción completa

Detalles Bibliográficos
Autores principales: Metzler-Zebeli, Barbara U., Klinsoda, Jutamat, Vötterl, Julia C., Verhovsek, Doris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409029/
https://www.ncbi.nlm.nih.gov/pubmed/32708445
http://dx.doi.org/10.3390/microorganisms8071073
Descripción
Sumario:Age-related successions in the porcine gut microbiome may modify the microbial response to dietary changes. This may especially affect the bacterial response to essential nutrients for bacterial metabolism, such as phosphorus (P). Against this background, we used phytase supplementation (0 or 650 phytase units/kg complete feed) to alter the P availability in the hindgut and studied the dietary response of the fecal bacterial microbiome from the early to late fattening period. Fecal DNA were isolated after 0, 3, 5 and 10 weeks and the V3-V4 region of the 16S rRNA gene was sequenced. Permutational analysis of variance showed distinct bacterial communities for diet and week. Alpha-diversity and taxonomy indicated progressing maturation of the bacterial community with age. Prevotellaceae declined, whereas Clostridiaceae and Ruminococcaceae increased from weeks 0 to 3, 5, and 10, indicating changes in fiber-digesting capacities with age. Phytase affected all major bacterial taxa but reduced species richness (Chao1) and diversity (Shannon and Simpson). To conclude, present results greatly support the importance of available P for bacterial proliferation, including fibrolytic, lactic acid- and butyrate-producing genera, in pigs. Results also emphasize the necessity to assess bacterial responses to dietary manipulation at several time points throughout the fattening period.