Cargando…

Economic Evaluation of Population-Based BRCA1/BRCA2 Mutation Testing across Multiple Countries and Health Systems

Clinical criteria/Family history-based BRCA testing misses a large proportion of BRCA carriers who can benefit from screening/prevention. We estimate the cost-effectiveness of population-based BRCA testing in general population women across different countries/health systems. A Markov model comparin...

Descripción completa

Detalles Bibliográficos
Autores principales: Manchanda, Ranjit, Sun, Li, Patel, Shreeya, Evans, Olivia, Wilschut, Janneke, De Freitas Lopes, Ana Carolina, Gaba, Faiza, Brentnall, Adam, Duffy, Stephen, Cui, Bin, Coelho De Soarez, Patricia, Husain, Zakir, Hopper, John, Sadique, Zia, Mukhopadhyay, Asima, Yang, Li, Berkhof, Johannes, Legood, Rosa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409094/
https://www.ncbi.nlm.nih.gov/pubmed/32708835
http://dx.doi.org/10.3390/cancers12071929
Descripción
Sumario:Clinical criteria/Family history-based BRCA testing misses a large proportion of BRCA carriers who can benefit from screening/prevention. We estimate the cost-effectiveness of population-based BRCA testing in general population women across different countries/health systems. A Markov model comparing the lifetime costs and effects of BRCA1/BRCA2 testing all general population women ≥30 years compared with clinical criteria/FH-based testing. Separate analyses are undertaken for the UK/USA/Netherlands (high-income countries/HIC), China/Brazil (upper–middle income countries/UMIC) and India (low–middle income countries/LMIC) using both health system/payer and societal perspectives. BRCA carriers undergo appropriate screening/prevention interventions to reduce breast cancer (BC) and ovarian cancer (OC) risk. Outcomes include OC, BC, and additional heart disease deaths and incremental cost-effectiveness ratio (ICER)/quality-adjusted life year (QALY). Probabilistic/one-way sensitivity analyses evaluate model uncertainty. For the base case, from a societal perspective, we found that population-based BRCA testing is cost-saving in HIC (UK-ICER = $−5639/QALY; USA-ICER = $−4018/QALY; Netherlands-ICER = $−11,433/QALY), and it appears cost-effective in UMIC (China-ICER = $18,066/QALY; Brazil-ICER = $13,579/QALY), but it is not cost-effective in LMIC (India-ICER = $23,031/QALY). From a payer perspective, population-based BRCA testing is highly cost-effective in HIC (UK-ICER = $21,191/QALY, USA-ICER = $16,552/QALY, Netherlands-ICER = $25,215/QALY), and it is cost-effective in UMIC (China-ICER = $23,485/QALY, Brazil−ICER = $20,995/QALY), but it is not cost-effective in LMIC (India-ICER = $32,217/QALY). BRCA testing costs below $172/test (ICER = $19,685/QALY), which makes it cost-effective (from a societal perspective) for LMIC/India. Population-based BRCA testing can prevent an additional 2319 to 2666 BC and 327 to 449 OC cases per million women than the current clinical strategy. Findings suggest that population-based BRCA testing for countries evaluated is extremely cost-effective across HIC/UMIC health systems, is cost-saving for HIC health systems from a societal perspective, and can prevent tens of thousands more BC/OC cases.