Cargando…

Biophysical Insights into Implications of PEG-400 on the α-Crystallin Structure: Multispectroscopic and Microscopic Approach

[Image: see text] Aggregation and precipitation of α-crystallin play a vital role in the cataract development. This study was targeted to delineate the effect of PEG-400 on the structural integrity of α-crystallin employing a multispectroscopic and microscopic approach. Intrinsic fluorescence and UV...

Descripción completa

Detalles Bibliográficos
Autores principales: Shamsi, Anas, Mohammad, Taj, Anwar, Saleha, Hassan, Md. Imtaiyaz, Ahmad, Faizan, Hasan, Ikramul, Islam, Asimul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409245/
https://www.ncbi.nlm.nih.gov/pubmed/32775924
http://dx.doi.org/10.1021/acsomega.0c02648
Descripción
Sumario:[Image: see text] Aggregation and precipitation of α-crystallin play a vital role in the cataract development. This study was targeted to delineate the effect of PEG-400 on the structural integrity of α-crystallin employing a multispectroscopic and microscopic approach. Intrinsic fluorescence and UV–vis spectroscopy suggested alterations in the tertiary structure of α-crystallin, namely global transition of native α-crystallin to a non-native form in the presence of PEG-400. Circular dichroism spectroscopy suggested secondary structural transition in a native conformation of α-crystallin in the presence of PEG-400. Loss in the native conformation of α-crystallin is implicated in cataract developments, thus highlighting the clinical significance of this work. Further, a significant increase in ANS fluorescence of PEG-400-incubated α-crystallin (7 days) suggested this non-native form to be molten globule (MG)-like state. Increased Thioflavin T fluorescence (ThT) and congo red (CR) absorbance along with transmission electron microscopy (TEM) confirmed the formation of the aggregates of α-crystallin after prolonged incubation with PEG-400. Insights into PEG-400-induced structural alterations can provide a platform to search for new therapeutic molecules that can combat α-crystallin-directed eye diseases.