Cargando…

Optical and Magnetic Properties of Ag–Ni Bimetallic Nanoparticles Assembled via Pulsed Laser-Induced Dewetting

[Image: see text] Pulsed laser-induced dewetting (PLiD) of Ag(0.5)Ni(0.5) thin films results in phase-separated bimetallic nanoparticles with size distributions that depend on the initial thin film thickness. Co-sputtering of Ag and Ni is used to generate the as-deposited (AD) nanogranular supersatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Garfinkel, David A., Pakeltis, Grace, Tang, Nan, Ivanov, Ilia N., Fowlkes, Jason D., Gilbert, Dustin A., Rack, Philip D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409265/
https://www.ncbi.nlm.nih.gov/pubmed/32775932
http://dx.doi.org/10.1021/acsomega.0c02894
Descripción
Sumario:[Image: see text] Pulsed laser-induced dewetting (PLiD) of Ag(0.5)Ni(0.5) thin films results in phase-separated bimetallic nanoparticles with size distributions that depend on the initial thin film thickness. Co-sputtering of Ag and Ni is used to generate the as-deposited (AD) nanogranular supersaturated thin films. The magnetic and optical properties of the AD thin films and PLiD nanoparticles are characterized using a vibrating sample magnetometer, optical absorption spectroscopy, and electron energy loss spectroscopy (EELS). Magnetic measurements demonstrate that Ag(0.5)Ni(0.5) nanoparticles are ferromagnetic at room temperature when the nanoparticle diameters are >20 nm and superparamagnetic <20 nm. Optical measurements show that all nanoparticle size distributions possess a local surface plasmon resonance (LSPR) peak that red-shifts with increasing diameter. Following PLiD, a Janus nanoparticle morphology is observed in scanning transmission electron microscopy, and low-loss EELS reveals size-dependent Ag and Ni LSPR dipole modes, while higher order modes appear only in the Ag hemisphere. PLiD of Ag–Ni thin films is shown to be a viable technique to generate bimetallic nanoparticles with both magnetic and plasmonic functionality.