Cargando…
Pushing property limits in materials discovery via boundless objective-free exploration
Materials chemists develop chemical compounds to meet often conflicting demands of industrial applications. This process may not be properly modeled by black-box optimization because the target property is not well defined in some cases. Herein, we propose a new algorithm for automated materials dis...
Autores principales: | Terayama, Kei, Sumita, Masato, Tamura, Ryo, Payne, Daniel T., Chahal, Mandeep K., Ishihara, Shinsuke, Tsuda, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409358/ https://www.ncbi.nlm.nih.gov/pubmed/32832058 http://dx.doi.org/10.1039/d0sc00982b |
Ejemplares similares
-
De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning
por: Sumita, Masato, et al.
Publicado: (2022) -
QCforever: A Quantum
Chemistry Wrapper for Everyone
to Use in Black-Box Optimization
por: Sumita, Masato, et al.
Publicado: (2022) -
Integrating Incompatible Assay Data Sets with Deep
Preference Learning
por: Sun, Xiaolin, et al.
Publicado: (2021) -
Hunting for Organic Molecules with Artificial Intelligence:
Molecules Optimized for Desired Excitation Energies
por: Sumita, Masato, et al.
Publicado: (2018) -
Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring
por: Fujita, Takehiro, et al.
Publicado: (2022)