Cargando…
Consolidating strategic information to monitor progress against the UNAIDS 90–90–90 targets: evaluating the operational feasibility of an electronic HIV testing register in Cape Town, South Africa
BACKGROUND: HIV diagnosis in South Africa is based on a point-of-care testing (PoCT) algorithm with paper-based record-keeping. Aggregated testing data are reported routinely. To facilitate improved HIV case-based surveillance, the Western Cape Province implemented a unique pilot intervention to dig...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409395/ https://www.ncbi.nlm.nih.gov/pubmed/32762660 http://dx.doi.org/10.1186/s12913-020-05517-7 |
Sumario: | BACKGROUND: HIV diagnosis in South Africa is based on a point-of-care testing (PoCT) algorithm with paper-based record-keeping. Aggregated testing data are reported routinely. To facilitate improved HIV case-based surveillance, the Western Cape Province implemented a unique pilot intervention to digitise PoCT results, at an individual level, and generate an electronic register using the newly developed Provincial Health Data Centre (PHDC). We describe the intervention (phased) and present an evaluation of the operational feasibility of the intervention. We also offer implementation insights into establishing electronic capture of individual level testing data. METHODS: Cross-sectional analyses were conducted on records of all patients attending a local Community Health Centre who had an HIV-PoCT during the study period. Data from the intervention were linked to the PHDC using a unique identifier and compared with aggregate data from the paper-based register. Correlation coefficients were calculated to quantify the correlation between the two monthly datasets. To support an understanding of the findings, the Department of Health project management team generated reflections on the implementation process, which were then grouped thematically into implementation lessons. RESULTS: In total, 11,337 PoCT records were digitised (70% (7954) during Phase I; and 30% (3383) during Phase II). Linkage of forms to the PHDC was 96% in Phase I and 98% in Phase II. Comparison with aggregate data showed high correlation during Phase I, but notable divergence during Phase II. Divergence in Phase II was due to stringent data quality requirements and high clinical staff turnover. Factors supporting implementation success in Phase I included direct oversight of data capturing by a manager with clinical and operational insight. Implementation challenges included operational, health system, and high cost-related issues. CONCLUSIONS: We demonstrate that rapid digitisation of HIV PoCT data, without compromising currently collected aggregate data, is operationally feasible, and can contribute to person-level longitudinal HIV case-based surveillance. To take to scale, we will need to improve PoCT platforms and clerical and administrative systems. Although we highlight challenges, we demonstrate that electronic HIV testing registers can successfully replace manual registers and improve efforts to monitor and evaluate HIV testing strategies. |
---|