Cargando…

Effects of illumination on the categorization of shiny materials

The present research was designed to examine how patterns of illumination influence the perceptual categorization of metal, shiny black, and shiny white materials. The stimuli depicted three possible objects that were illuminated by five possible high-dynamic-range imaging light maps, which varied i...

Descripción completa

Detalles Bibliográficos
Autores principales: Norman, J. Farley, Todd, James T., Phillips, Flip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409589/
https://www.ncbi.nlm.nih.gov/pubmed/32392285
http://dx.doi.org/10.1167/jov.20.5.2
_version_ 1783568088370774016
author Norman, J. Farley
Todd, James T.
Phillips, Flip
author_facet Norman, J. Farley
Todd, James T.
Phillips, Flip
author_sort Norman, J. Farley
collection PubMed
description The present research was designed to examine how patterns of illumination influence the perceptual categorization of metal, shiny black, and shiny white materials. The stimuli depicted three possible objects that were illuminated by five possible high-dynamic-range imaging light maps, which varied in their overall distributions of illuminant directions and intensities. The surfaces included a low roughness chrome material, a shiny black material, and a shiny white material with both diffuse and specular components. Observers rated each stimulus by adjusting four sliders to indicate their confidence that the depicted material was metal, shiny black, shiny white, or something else, and these adjustments were constrained so that the sum of all four settings was always 100%. The results revealed that the metal and shiny black categories are easily confused. For example, metal materials with low intensity light maps or a narrow range of illuminant directions are often judged as shiny black, whereas shiny black materials with high intensity light maps or a wide range of illuminant directions are often judged as metal. To discover the visual information on which these judgements are based, we measured several possible image statistics, and we found two that were highly correlated with the observers’ confidence ratings in appropriate contexts. We also performed a spherical harmonic analysis on the different light maps to quantitatively predict how they would bias observers’ judgments of metal and shiny black surfaces.
format Online
Article
Text
id pubmed-7409589
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Association for Research in Vision and Ophthalmology
record_format MEDLINE/PubMed
spelling pubmed-74095892020-08-19 Effects of illumination on the categorization of shiny materials Norman, J. Farley Todd, James T. Phillips, Flip J Vis Article The present research was designed to examine how patterns of illumination influence the perceptual categorization of metal, shiny black, and shiny white materials. The stimuli depicted three possible objects that were illuminated by five possible high-dynamic-range imaging light maps, which varied in their overall distributions of illuminant directions and intensities. The surfaces included a low roughness chrome material, a shiny black material, and a shiny white material with both diffuse and specular components. Observers rated each stimulus by adjusting four sliders to indicate their confidence that the depicted material was metal, shiny black, shiny white, or something else, and these adjustments were constrained so that the sum of all four settings was always 100%. The results revealed that the metal and shiny black categories are easily confused. For example, metal materials with low intensity light maps or a narrow range of illuminant directions are often judged as shiny black, whereas shiny black materials with high intensity light maps or a wide range of illuminant directions are often judged as metal. To discover the visual information on which these judgements are based, we measured several possible image statistics, and we found two that were highly correlated with the observers’ confidence ratings in appropriate contexts. We also performed a spherical harmonic analysis on the different light maps to quantitatively predict how they would bias observers’ judgments of metal and shiny black surfaces. The Association for Research in Vision and Ophthalmology 2020-05-11 /pmc/articles/PMC7409589/ /pubmed/32392285 http://dx.doi.org/10.1167/jov.20.5.2 Text en Copyright 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
spellingShingle Article
Norman, J. Farley
Todd, James T.
Phillips, Flip
Effects of illumination on the categorization of shiny materials
title Effects of illumination on the categorization of shiny materials
title_full Effects of illumination on the categorization of shiny materials
title_fullStr Effects of illumination on the categorization of shiny materials
title_full_unstemmed Effects of illumination on the categorization of shiny materials
title_short Effects of illumination on the categorization of shiny materials
title_sort effects of illumination on the categorization of shiny materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409589/
https://www.ncbi.nlm.nih.gov/pubmed/32392285
http://dx.doi.org/10.1167/jov.20.5.2
work_keys_str_mv AT normanjfarley effectsofilluminationonthecategorizationofshinymaterials
AT toddjamest effectsofilluminationonthecategorizationofshinymaterials
AT phillipsflip effectsofilluminationonthecategorizationofshinymaterials