Cargando…
Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space
There is an urgent need for the identification of effective therapeutics for COVID-19 and we have developed a machine learning drug discovery pipeline to identify several drug candidates. First, we collect assay data for 65 target human proteins known to interact with the SARS-CoV-2 proteins, includ...
Autores principales: | Kowalewski, Joel, Ray, Anandasankar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409807/ https://www.ncbi.nlm.nih.gov/pubmed/32802980 http://dx.doi.org/10.1016/j.heliyon.2020.e04639 |
Ejemplares similares
-
Expanding the olfactory code by in silico decoding of odor-receptor chemical space
por: Boyle, Sean Michael, et al.
Publicado: (2013) -
Predicting Human Olfactory Perception from Activities of Odorant Receptors
por: Kowalewski, Joel, et al.
Publicado: (2020) -
Prediction of SARS-CoV-2-positivity from million-scale complete blood counts using machine learning
por: Zuin, Gianlucca, et al.
Publicado: (2022) -
Exploiting cheminformatic and machine learning to navigate the available chemical space of potential small molecule inhibitors of SARS-CoV-2
por: Kumar, Abhinit, et al.
Publicado: (2020) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020)