Cargando…
Extended experimental inferential structure determination method in determining the structural ensembles of disordered protein states
Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. Here we introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409953/ https://www.ncbi.nlm.nih.gov/pubmed/32775701 http://dx.doi.org/10.1038/s42004-020-0323-0 |
Sumario: | Proteins with intrinsic or unfolded state disorder comprise a new frontier in structural biology, requiring the characterization of diverse and dynamic structural ensembles. Here we introduce a comprehensive Bayesian framework, the Extended Experimental Inferential Structure Determination (X-EISD) method, which calculates the maximum log-likelihood of a disordered protein ensemble. X-EISD accounts for the uncertainties of a range of experimental data and back-calculation models from structures, including NMR chemical shifts, J-couplings, Nuclear Overhauser Effects (NOEs), paramagnetic relaxation enhancements (PREs), residual dipolar couplings (RDCs), hydrodynamic radii (R(h)), single molecule fluorescence Förster resonance energy transfer (smFRET) and small angle X-ray scattering (SAXS). We apply X-EISD to the joint optimization against experimental data for the unfolded drkN SH3 domain and find that combining a local data type, such as chemical shifts or J-couplings, paired with long-ranged restraints such as NOEs, PREs or smFRET, yields structural ensembles in good agreement with all other data types if combined with representative IDP conformers. |
---|