Cargando…

Cases of ROS1-rearranged lung cancer: when to use crizotinib, entrectinib, lorlatinib, and beyond?

ROS1-rearranged (also known as ROS1 fusion-positive) non-small-cell lung cancer is an uncommon but distinct molecular subgroup seen in approximately 1–2% of cases. Oncogene addiction due to constitutive ROS1 tyrosine kinase activation has allowed development of molecularly targeted therapies with re...

Descripción completa

Detalles Bibliográficos
Autores principales: Sehgal, Kartik, Piper-Vallillo, Andrew J., Viray, Hollis, Khan, Adeel M., Rangachari, Deepa, Costa, Daniel B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410006/
https://www.ncbi.nlm.nih.gov/pubmed/32776005
http://dx.doi.org/10.21037/pcm-2020-potb-02
Descripción
Sumario:ROS1-rearranged (also known as ROS1 fusion-positive) non-small-cell lung cancer is an uncommon but distinct molecular subgroup seen in approximately 1–2% of cases. Oncogene addiction due to constitutive ROS1 tyrosine kinase activation has allowed development of molecularly targeted therapies with remarkable anti-tumor activity. Both crizotinib and entrectinib, multitargeted tyrosine kinase inhibitors (TKIs) have now received approval by the FDA for treatment of patients with advanced ROS1-rearranged lung cancers; however, the clinical efficacy and safety of these drugs have been derived from expansion cohorts of single-arm phase I or basket clinical trials with relatively small populations of this clinically and molecularly distinct subgroup. Both drugs lead to high objective response rates (approximately 70–80%) and have manageable side effects, although only entrectinib has potent intracranial efficacy. Lorlatinib is an oral brain-penetrant ALK/ROS1 TKI with activity in both TKI-naïve and some crizotinib-resistant settings (albeit with limited potency against the crizotinib/entrectinib-resistant ROS1-G2032R mutation). We describe cases of advanced ROS1-rearranged lung cancer receiving crizotinib, entrectinib, and/or lorlatinib in first and later line treatment settings to dissect the current state of evidence supporting management decisions for these patients. The next generation ROS1 TKIs (repotrectinib and DS-6051b), owing to their broad activity against kinase mutations including ROS1-G2032R in preclinical studies, hold promise to transform the current treatment paradigm and permit even further gains with regards to long-term outcomes in this subset of patients.