Cargando…
Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders
PURPOSE: To assess whether a generative adversarial network (GAN) could synthesize realistic optical coherence tomography (OCT) images that satisfactorily serve as the educational images for retinal specialists, and the training datasets for the classification of various retinal disorders using deep...
Autores principales: | Zheng, Ce, Xie, Xiaolin, Zhou, Kang, Chen, Bang, Chen, Jili, Ye, Haiyun, Li, Wen, Qiao, Tong, Gao, Shenghua, Yang, Jianlong, Liu, Jiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410116/ https://www.ncbi.nlm.nih.gov/pubmed/32832202 http://dx.doi.org/10.1167/tvst.9.2.29 |
Ejemplares similares
-
Assessment of Generative Adversarial Networks for Synthetic Anterior Segment Optical Coherence Tomography Images in Closed-Angle Detection
por: Zheng, Ce, et al.
Publicado: (2021) -
Methodological Challenges of Deep Learning in Optical Coherence Tomography for Retinal Diseases: A Review
por: Yanagihara, Ryan T., et al.
Publicado: (2020) -
An Intelligent Optical Coherence Tomography-based System for Pathological Retinal Cases Identification and Urgent Referrals
por: Wang, Lilong, et al.
Publicado: (2020) -
Activated Retinal Pigment Epithelium, an Optical Coherence Tomography Biomarker for Progression in Age-Related Macular Degeneration
por: Curcio, Christine A., et al.
Publicado: (2017) -
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning
por: Guo, Yukun, et al.
Publicado: (2020)