Cargando…
Unzipping of black phosphorus to form zigzag-phosphorene nanobelts
Phosphorene, monolayer or few-layer black phosphorus, exhibits fascinating anisotropic properties and shows interesting semiconducting behavior. The synthesis of phosphorene nanosheets is still a hot topic, including the shaping of its two-dimensional structure into nanoribbons or nanobelts. Here we...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411046/ https://www.ncbi.nlm.nih.gov/pubmed/32764557 http://dx.doi.org/10.1038/s41467-020-17622-6 |
Sumario: | Phosphorene, monolayer or few-layer black phosphorus, exhibits fascinating anisotropic properties and shows interesting semiconducting behavior. The synthesis of phosphorene nanosheets is still a hot topic, including the shaping of its two-dimensional structure into nanoribbons or nanobelts. Here we report electrochemical unzipping of single crystalline black phosphorus into zigzag-phosphorene nanobelts, as well as nanosheets and quantum dots, via an oxygen-driven mechanism. The experimental results agree well with our theoretical calculations. The calculation for the unzipping mechanism study suggests that interstitial oxygen-pairs are the critical intermediate species for generating zigzag-phosphorene nanobelts. Although phosphorene oxidation has been reported, lengthwise cutting is hitherto unreported. Our discovery of phosphorene cut upon oxidation represents a previously unknown mechanism for the formation of various dimensions of phosphorene nanostructures, especially zigzag-phosphorene nanobelts. It opens up a way for studying the quantum effects and electronic properties of zigzag-phosphorene nanobelts. |
---|