Cargando…
A New Method for Counting Reproductive Structures in Digitized Herbarium Specimens Using Mask R-CNN
Phenology—the timing of life-history events—is a key trait for understanding responses of organisms to climate. The digitization and online mobilization of herbarium specimens is rapidly advancing our understanding of plant phenological response to climate and climatic change. The current practice o...
Autores principales: | Davis, Charles C., Champ, Julien, Park, Daniel S., Breckheimer, Ian, Lyra, Goia M., Xie, Junxi, Joly, Alexis, Tarapore, Dharmesh, Ellison, Aaron M., Bonnet, Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411132/ https://www.ncbi.nlm.nih.gov/pubmed/32849691 http://dx.doi.org/10.3389/fpls.2020.01129 |
Ejemplares similares
-
Going deeper in the automated identification of Herbarium specimens
por: Carranza-Rojas, Jose, et al.
Publicado: (2017) -
A new fine‐grained method for automated visual analysis of herbarium specimens: A case study for phenological data extraction
por: Goëau, Hervé, et al.
Publicado: (2020) -
Machine Learning Undercounts Reproductive Organs on Herbarium Specimens but Accurately Derives Their Quantitative Phenological Status: A Case Study of Streptanthus tortuosus
por: Love, Natalie L. R., et al.
Publicado: (2021) -
Machine Learning Using Digitized Herbarium Specimens to Advance Phenological Research
por: Pearson, Katelin D, et al.
Publicado: (2020) -
Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants
por: Yost, Jennifer M., et al.
Publicado: (2018)