Cargando…
Risk gene identification and support vector machine learning to construct an early diagnosis model of myocardial infarction
The present study aimed to identify genes associated with increased risk of myocardial infarction (MI) and construct an early diagnosis model based on support vector machine (SVM) learning. The gene expression profile data of GSE34198, containing 97 human blood samples including 49 patients with MI...
Autores principales: | Fang, Hong-Zhi, Hu, Dan-Li, Li, Qin, Tu, Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411293/ https://www.ncbi.nlm.nih.gov/pubmed/32705275 http://dx.doi.org/10.3892/mmr.2020.11247 |
Ejemplares similares
-
Identification of risk genes associated with myocardial infarction based on the recursive feature elimination algorithm and support vector machine classifier
por: Yang, Xiaoqiang
Publicado: (2018) -
Detection and Classification of Myocardial Infarction with Support Vector Machine Classifier Using Grasshopper Optimization Algorithm
por: Safdarian, Naser, et al.
Publicado: (2021) -
Learning with Support Vector Machines
por: Campbell, Colin, et al.
Publicado: (2010) -
Machine Learning Revealed Ferroptosis Features and a Novel Ferroptosis-Based Classification for Diagnosis in Acute Myocardial Infarction
por: Huang, Dan, et al.
Publicado: (2022) -
Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations
por: Doudesis, Dimitrios, et al.
Publicado: (2023)