Cargando…

Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk once symptoms worsen; therefore, early identification of severely ill patients can enable early intervention, prevent disease p...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Lu-shan, Li, Pu, Sun, Fenglong, Zhang, Yanpei, Xu, Chenghai, Zhu, Hongbo, Cai, Feng-Qin, He, Yu-Lin, Zhang, Wen-Feng, Ma, Si-Cong, Hu, Chenyi, Gong, Mengchun, Liu, Li, Shi, Wenzhao, Zhu, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411489/
https://www.ncbi.nlm.nih.gov/pubmed/32850746
http://dx.doi.org/10.3389/fbioe.2020.00898
_version_ 1783568391495221248
author Xiao, Lu-shan
Li, Pu
Sun, Fenglong
Zhang, Yanpei
Xu, Chenghai
Zhu, Hongbo
Cai, Feng-Qin
He, Yu-Lin
Zhang, Wen-Feng
Ma, Si-Cong
Hu, Chenyi
Gong, Mengchun
Liu, Li
Shi, Wenzhao
Zhu, Hong
author_facet Xiao, Lu-shan
Li, Pu
Sun, Fenglong
Zhang, Yanpei
Xu, Chenghai
Zhu, Hongbo
Cai, Feng-Qin
He, Yu-Lin
Zhang, Wen-Feng
Ma, Si-Cong
Hu, Chenyi
Gong, Mengchun
Liu, Li
Shi, Wenzhao
Zhu, Hong
author_sort Xiao, Lu-shan
collection PubMed
description OBJECTIVES: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk once symptoms worsen; therefore, early identification of severely ill patients can enable early intervention, prevent disease progression, and help reduce mortality. This study aims to develop an artificial intelligence-assisted tool using computed tomography (CT) imaging to predict disease severity and further estimate the risk of developing severe disease in patients suffering from COVID-19. MATERIALS AND METHODS: Initial CT images of 408 confirmed COVID-19 patients were retrospectively collected between January 1, 2020 and March 18, 2020 from hospitals in Honghu and Nanchang. The data of 303 patients in the People’s Hospital of Honghu were assigned as the training data, and those of 105 patients in The First Affiliated Hospital of Nanchang University were assigned as the test dataset. A deep learning based-model using multiple instance learning and residual convolutional neural network (ResNet34) was developed and validated. The discrimination ability and prediction accuracy of the model were evaluated using the receiver operating characteristic curve and confusion matrix, respectively. RESULTS: The deep learning-based model had an area under the curve (AUC) of 0.987 (95% confidence interval [CI]: 0.968–1.00) and an accuracy of 97.4% in the training set, whereas it had an AUC of 0.892 (0.828–0.955) and an accuracy of 81.9% in the test set. In the subgroup analysis of patients who had non-severe COVID-19 on admission, the model achieved AUCs of 0.955 (0.884–1.00) and 0.923 (0.864–0.983) and accuracies of 97.0 and 81.6% in the Honghu and Nanchang subgroups, respectively. CONCLUSION: Our deep learning-based model can accurately predict disease severity as well as disease progression in COVID-19 patients using CT imaging, offering promise for guiding clinical treatment.
format Online
Article
Text
id pubmed-7411489
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-74114892020-08-25 Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019 Xiao, Lu-shan Li, Pu Sun, Fenglong Zhang, Yanpei Xu, Chenghai Zhu, Hongbo Cai, Feng-Qin He, Yu-Lin Zhang, Wen-Feng Ma, Si-Cong Hu, Chenyi Gong, Mengchun Liu, Li Shi, Wenzhao Zhu, Hong Front Bioeng Biotechnol Bioengineering and Biotechnology OBJECTIVES: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk once symptoms worsen; therefore, early identification of severely ill patients can enable early intervention, prevent disease progression, and help reduce mortality. This study aims to develop an artificial intelligence-assisted tool using computed tomography (CT) imaging to predict disease severity and further estimate the risk of developing severe disease in patients suffering from COVID-19. MATERIALS AND METHODS: Initial CT images of 408 confirmed COVID-19 patients were retrospectively collected between January 1, 2020 and March 18, 2020 from hospitals in Honghu and Nanchang. The data of 303 patients in the People’s Hospital of Honghu were assigned as the training data, and those of 105 patients in The First Affiliated Hospital of Nanchang University were assigned as the test dataset. A deep learning based-model using multiple instance learning and residual convolutional neural network (ResNet34) was developed and validated. The discrimination ability and prediction accuracy of the model were evaluated using the receiver operating characteristic curve and confusion matrix, respectively. RESULTS: The deep learning-based model had an area under the curve (AUC) of 0.987 (95% confidence interval [CI]: 0.968–1.00) and an accuracy of 97.4% in the training set, whereas it had an AUC of 0.892 (0.828–0.955) and an accuracy of 81.9% in the test set. In the subgroup analysis of patients who had non-severe COVID-19 on admission, the model achieved AUCs of 0.955 (0.884–1.00) and 0.923 (0.864–0.983) and accuracies of 97.0 and 81.6% in the Honghu and Nanchang subgroups, respectively. CONCLUSION: Our deep learning-based model can accurately predict disease severity as well as disease progression in COVID-19 patients using CT imaging, offering promise for guiding clinical treatment. Frontiers Media S.A. 2020-07-31 /pmc/articles/PMC7411489/ /pubmed/32850746 http://dx.doi.org/10.3389/fbioe.2020.00898 Text en Copyright © 2020 Xiao, Li, Sun, Zhang, Xu, Zhu, Cai, He, Zhang, Ma, Hu, Gong, Liu, Shi and Zhu. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Bioengineering and Biotechnology
Xiao, Lu-shan
Li, Pu
Sun, Fenglong
Zhang, Yanpei
Xu, Chenghai
Zhu, Hongbo
Cai, Feng-Qin
He, Yu-Lin
Zhang, Wen-Feng
Ma, Si-Cong
Hu, Chenyi
Gong, Mengchun
Liu, Li
Shi, Wenzhao
Zhu, Hong
Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title_full Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title_fullStr Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title_full_unstemmed Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title_short Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019
title_sort development and validation of a deep learning-based model using computed tomography imaging for predicting disease severity of coronavirus disease 2019
topic Bioengineering and Biotechnology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411489/
https://www.ncbi.nlm.nih.gov/pubmed/32850746
http://dx.doi.org/10.3389/fbioe.2020.00898
work_keys_str_mv AT xiaolushan developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT lipu developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT sunfenglong developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT zhangyanpei developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT xuchenghai developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT zhuhongbo developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT caifengqin developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT heyulin developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT zhangwenfeng developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT masicong developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT huchenyi developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT gongmengchun developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT liuli developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT shiwenzhao developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019
AT zhuhong developmentandvalidationofadeeplearningbasedmodelusingcomputedtomographyimagingforpredictingdiseaseseverityofcoronavirusdisease2019