Cargando…

Functional analysis of RXLR effectors from the New Zealand kauri dieback pathogen Phytophthora agathidicida

New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system o...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Yanan, Dupont, Pierre‐Yves, Mesarich, Carl H., Yang, Bo, McDougal, Rebecca L., Panda, Preeti, Dijkwel, Paul, Studholme, David J., Sambles, Christine, Win, Joe, Wang, Yuanchao, Williams, Nari M., Bradshaw, Rosie E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411639/
https://www.ncbi.nlm.nih.gov/pubmed/32638523
http://dx.doi.org/10.1111/mpp.12967
Descripción
Sumario:New Zealand kauri is an ancient, iconic, gymnosperm tree species that is under threat from a lethal dieback disease caused by the oomycete Phytophthora agathidicida. To gain insight into this pathogen, we determined whether proteinaceous effectors of P. agathidicida interact with the immune system of a model angiosperm, Nicotiana, as previously shown for Phytophthora pathogens of angiosperms. From the P. agathidicida genome, we defined and analysed a set of RXLR effectors, a class of proteins that typically have important roles in suppressing or activating the plant immune system. RXLRs were screened for their ability to activate or suppress the Nicotiana plant immune system using Agrobacterium tumefaciens transient transformation assays. Nine P. agathidicida RXLRs triggered cell death or suppressed plant immunity in Nicotiana, of which three were expressed in kauri. For the most highly expressed, P. agathidicida (Pa) RXLR24, candidate cognate immune receptors associated with cell death were identified in Nicotiana benthamiana using RNA silencing‐based approaches. Our results show that RXLRs of a pathogen of gymnosperms can interact with the immune system of an angiosperm species. This study provides an important foundation for studying the molecular basis of plant–pathogen interactions in gymnosperm forest trees, including kauri.