Cargando…
Predictive Models for the Characterization of Internal Defects in Additive Materials from Active Thermography Sequences Supported by Machine Learning Methods
The present article addresses a generation of predictive models that assesses the thickness and length of internal defects in additive manufacturing materials. These modes use data from the application of active transient thermography numerical simulation. In this manner, the raised procedure is an...
Autores principales: | Rodríguez-Martín, Manuel, Fueyo, José G., Gonzalez-Aguilera, Diego, Madruga, Francisco J., García-Martín, Roberto, Muñóz, Ángel Luis, Pisonero, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411725/ https://www.ncbi.nlm.nih.gov/pubmed/32709017 http://dx.doi.org/10.3390/s20143982 |
Ejemplares similares
-
Smartvessel: A New Extinguisher Prototype Based on New Materials and IoT Sensors
por: Pisonero, Javier, et al.
Publicado: (2023) -
Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization
por: Tian, Gui Yun, et al.
Publicado: (2016) -
Lock-in thermography: basics and use for evaluating electronic devices and materials
por: Breitenstein, Otwin, et al.
Publicado: (2018) -
Special Issue on “Infrared Thermography and Additional Non-Destructive Testing for Building, Structure and Material Inspections”
por: Sfarra, Stefano, et al.
Publicado: (2021) -
Quantitative Evaluation of Pulsed Thermography, Lock-in Thermography and Vibrothermography on Foreign Object Defect (FOD) in CFRP
por: Liu, Bin, et al.
Publicado: (2016)