Cargando…
Deep Global Features for Point Cloud Alignment
Point cloud registration is a key problem in computer vision applications and involves finding a rigid transform from a point cloud into another such that they align together. The iterative closest point (ICP) method is a simple and effective solution that converges to a local optimum. However, desp...
Autores principales: | Khazari, Ahmed El, Que, Yue, Sung, Thai Leang, Lee, Hyo Jong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411762/ https://www.ncbi.nlm.nih.gov/pubmed/32698504 http://dx.doi.org/10.3390/s20144032 |
Ejemplares similares
-
Deep Segmentation of Point Clouds of Wheat
por: Ghahremani, Morteza, et al.
Publicado: (2021) -
Learning Representative Features by Deep Attention Network for 3D Point Cloud Registration
por: Xia, Xiaokai, et al.
Publicado: (2023) -
Condition-Invariant Robot Localization Using Global Sequence Alignment of Deep Features
por: Oh, Junghyun, et al.
Publicado: (2021) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022) -
DNet: Dynamic Neighborhood Feature Learning in Point Cloud
por: Tian, Fujing, et al.
Publicado: (2021)