Cargando…

Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials

Enterosorbents are widely-used materials for human body detoxification, which function by immobilizing and eliminating endogenous and exogenous toxins. Here, activated carbons, obtained from the lignocellulosic raw vegetal materials of indigenous provenance, have been studied. Walnut shell and wood...

Descripción completa

Detalles Bibliográficos
Autores principales: Lupaşcu, Tudor, Petuhov, Oleg, Ţîmbaliuc, Nina, Cibotaru, Silvia, Rotaru, Andrei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411815/
https://www.ncbi.nlm.nih.gov/pubmed/32646035
http://dx.doi.org/10.3390/molecules25133095
_version_ 1783568465792073728
author Lupaşcu, Tudor
Petuhov, Oleg
Ţîmbaliuc, Nina
Cibotaru, Silvia
Rotaru, Andrei
author_facet Lupaşcu, Tudor
Petuhov, Oleg
Ţîmbaliuc, Nina
Cibotaru, Silvia
Rotaru, Andrei
author_sort Lupaşcu, Tudor
collection PubMed
description Enterosorbents are widely-used materials for human body detoxification, which function by immobilizing and eliminating endogenous and exogenous toxins. Here, activated carbons, obtained from the lignocellulosic raw vegetal materials of indigenous provenance, have been studied. Walnut shell and wood from local species of nuts and apple-trees were carbonized, and further activated at high temperatures with water vapors in a rotary kiln. A second activation was carried out, in a fluidized bed reactor, but for shorter times. The textural properties of the samples were determined from the adsorption isotherms of nitrogen at 77 K, allowing the obtaining of highly mesoporous materials, while the adsorption capacity permitted an essential rise of six to seven times in the maximal adsorption values of the metabolites, which was determined by the reactivation process. A kinetic study of vitamin B(12) and creatinine immobilization was performed, the optimal immobilization time for the apple-tree wood reactivated carbons being 2 times longer than for those originating from walnut shells. An additional investigation was also performed in specific conditions that simulate the real environment of immobilization: the temperature of a febrile human body (at the temperature T = 38 °C) and the characteristic acidity of the urinary tract and stomach (at the pH of 5.68 and 2.53, respectively). The activated carbonic adsorbents studied here, together with the results of the immobilization studies, show that these procedures can conduct a good incorporation of some endogenous metabolic products, such as vitamin B(12) and creatinine, therefore presenting a good opportunity for their use as forthcoming commercial enterosorbents.
format Online
Article
Text
id pubmed-7411815
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74118152020-08-25 Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials Lupaşcu, Tudor Petuhov, Oleg Ţîmbaliuc, Nina Cibotaru, Silvia Rotaru, Andrei Molecules Article Enterosorbents are widely-used materials for human body detoxification, which function by immobilizing and eliminating endogenous and exogenous toxins. Here, activated carbons, obtained from the lignocellulosic raw vegetal materials of indigenous provenance, have been studied. Walnut shell and wood from local species of nuts and apple-trees were carbonized, and further activated at high temperatures with water vapors in a rotary kiln. A second activation was carried out, in a fluidized bed reactor, but for shorter times. The textural properties of the samples were determined from the adsorption isotherms of nitrogen at 77 K, allowing the obtaining of highly mesoporous materials, while the adsorption capacity permitted an essential rise of six to seven times in the maximal adsorption values of the metabolites, which was determined by the reactivation process. A kinetic study of vitamin B(12) and creatinine immobilization was performed, the optimal immobilization time for the apple-tree wood reactivated carbons being 2 times longer than for those originating from walnut shells. An additional investigation was also performed in specific conditions that simulate the real environment of immobilization: the temperature of a febrile human body (at the temperature T = 38 °C) and the characteristic acidity of the urinary tract and stomach (at the pH of 5.68 and 2.53, respectively). The activated carbonic adsorbents studied here, together with the results of the immobilization studies, show that these procedures can conduct a good incorporation of some endogenous metabolic products, such as vitamin B(12) and creatinine, therefore presenting a good opportunity for their use as forthcoming commercial enterosorbents. MDPI 2020-07-07 /pmc/articles/PMC7411815/ /pubmed/32646035 http://dx.doi.org/10.3390/molecules25133095 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lupaşcu, Tudor
Petuhov, Oleg
Ţîmbaliuc, Nina
Cibotaru, Silvia
Rotaru, Andrei
Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title_full Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title_fullStr Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title_full_unstemmed Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title_short Adsorption Capacity of Vitamin B(12) and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials
title_sort adsorption capacity of vitamin b(12) and creatinine on highly-mesoporous activated carbons obtained from lignocellulosic raw materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411815/
https://www.ncbi.nlm.nih.gov/pubmed/32646035
http://dx.doi.org/10.3390/molecules25133095
work_keys_str_mv AT lupascutudor adsorptioncapacityofvitaminb12andcreatinineonhighlymesoporousactivatedcarbonsobtainedfromlignocellulosicrawmaterials
AT petuhovoleg adsorptioncapacityofvitaminb12andcreatinineonhighlymesoporousactivatedcarbonsobtainedfromlignocellulosicrawmaterials
AT timbaliucnina adsorptioncapacityofvitaminb12andcreatinineonhighlymesoporousactivatedcarbonsobtainedfromlignocellulosicrawmaterials
AT cibotarusilvia adsorptioncapacityofvitaminb12andcreatinineonhighlymesoporousactivatedcarbonsobtainedfromlignocellulosicrawmaterials
AT rotaruandrei adsorptioncapacityofvitaminb12andcreatinineonhighlymesoporousactivatedcarbonsobtainedfromlignocellulosicrawmaterials