Cargando…

On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests

The geometric burning law of gun propellants is widely used in computer codes used for the simulations of the internal ballistics of guns. However, the results of closed vessel tests prove that the burning process of some propellants deviates from the geometric law. Validation of the hypothesis that...

Descripción completa

Detalles Bibliográficos
Autores principales: Trębiński, Radosław, Janiszewski, Jacek, Leciejewski, Zbigniew, Surma, Zbigniew, Kamińska, Kinga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411880/
https://www.ncbi.nlm.nih.gov/pubmed/32708266
http://dx.doi.org/10.3390/ma13143243
_version_ 1783568481077166080
author Trębiński, Radosław
Janiszewski, Jacek
Leciejewski, Zbigniew
Surma, Zbigniew
Kamińska, Kinga
author_facet Trębiński, Radosław
Janiszewski, Jacek
Leciejewski, Zbigniew
Surma, Zbigniew
Kamińska, Kinga
author_sort Trębiński, Radosław
collection PubMed
description The geometric burning law of gun propellants is widely used in computer codes used for the simulations of the internal ballistics of guns. However, the results of closed vessel tests prove that the burning process of some propellants deviates from the geometric law. Validation of the hypothesis that observed deviations can be attributed to the cracking of propellant grains was the aim of this work. In order to verify the hypothesis, three types of gun propellants were chosen with considerably differing mechanical strengths: a single-base propellant, a double-base propellant, and a composite propellant. The mechanical properties of the gun propellants were tested using a quasi-static compression method with strain rate values of the order of 0.001 s(−1) and the Split Hopkinson Pressure Bar technique with the strain rate in the range of 1000–6000 s(−1). The mechanical responses of the propellants were assessed on the basis of the true stress–strain curves obtained and from the point of view of the occurrence of cracks in the propellant grains specimens. Moreover, closed vessel tests were performed to determine experimental shape functions for the considered gun propellants. Juxtaposition of the stress‒strain curves with the experimental shape functions proved that the observed deviations from the geometrical burning law can be attributed mainly to the cracking of propellant grains. The results obtained showed that the rheological properties of propellants are important not only from the point of view of logistical issues but also for the properly controlled burning process of propellants during the shot.
format Online
Article
Text
id pubmed-7411880
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-74118802020-08-25 On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests Trębiński, Radosław Janiszewski, Jacek Leciejewski, Zbigniew Surma, Zbigniew Kamińska, Kinga Materials (Basel) Article The geometric burning law of gun propellants is widely used in computer codes used for the simulations of the internal ballistics of guns. However, the results of closed vessel tests prove that the burning process of some propellants deviates from the geometric law. Validation of the hypothesis that observed deviations can be attributed to the cracking of propellant grains was the aim of this work. In order to verify the hypothesis, three types of gun propellants were chosen with considerably differing mechanical strengths: a single-base propellant, a double-base propellant, and a composite propellant. The mechanical properties of the gun propellants were tested using a quasi-static compression method with strain rate values of the order of 0.001 s(−1) and the Split Hopkinson Pressure Bar technique with the strain rate in the range of 1000–6000 s(−1). The mechanical responses of the propellants were assessed on the basis of the true stress–strain curves obtained and from the point of view of the occurrence of cracks in the propellant grains specimens. Moreover, closed vessel tests were performed to determine experimental shape functions for the considered gun propellants. Juxtaposition of the stress‒strain curves with the experimental shape functions proved that the observed deviations from the geometrical burning law can be attributed mainly to the cracking of propellant grains. The results obtained showed that the rheological properties of propellants are important not only from the point of view of logistical issues but also for the properly controlled burning process of propellants during the shot. MDPI 2020-07-21 /pmc/articles/PMC7411880/ /pubmed/32708266 http://dx.doi.org/10.3390/ma13143243 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trębiński, Radosław
Janiszewski, Jacek
Leciejewski, Zbigniew
Surma, Zbigniew
Kamińska, Kinga
On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title_full On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title_fullStr On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title_full_unstemmed On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title_short On Influence of Mechanical Properties of Gun Propellants on Their Ballistic Characteristics Determined in Closed Vessel Tests
title_sort on influence of mechanical properties of gun propellants on their ballistic characteristics determined in closed vessel tests
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411880/
https://www.ncbi.nlm.nih.gov/pubmed/32708266
http://dx.doi.org/10.3390/ma13143243
work_keys_str_mv AT trebinskiradosław oninfluenceofmechanicalpropertiesofgunpropellantsontheirballisticcharacteristicsdeterminedinclosedvesseltests
AT janiszewskijacek oninfluenceofmechanicalpropertiesofgunpropellantsontheirballisticcharacteristicsdeterminedinclosedvesseltests
AT leciejewskizbigniew oninfluenceofmechanicalpropertiesofgunpropellantsontheirballisticcharacteristicsdeterminedinclosedvesseltests
AT surmazbigniew oninfluenceofmechanicalpropertiesofgunpropellantsontheirballisticcharacteristicsdeterminedinclosedvesseltests
AT kaminskakinga oninfluenceofmechanicalpropertiesofgunpropellantsontheirballisticcharacteristicsdeterminedinclosedvesseltests