Cargando…

Physics-Based Device Models and Progress Review for Active Piezoelectric Semiconductor Devices

Piezoelectric devices transduce mechanical energy to electrical energy by elastic deformation, which distorts local dipoles in crystalline materials. Amongst electromechanical sensors, piezoelectric devices are advantageous because of their scalability, light weight, low power consumption, and readi...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Hongseok, Dayeh, Shadi A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411910/
https://www.ncbi.nlm.nih.gov/pubmed/32664467
http://dx.doi.org/10.3390/s20143872
Descripción
Sumario:Piezoelectric devices transduce mechanical energy to electrical energy by elastic deformation, which distorts local dipoles in crystalline materials. Amongst electromechanical sensors, piezoelectric devices are advantageous because of their scalability, light weight, low power consumption, and readily built-in amplification and ability for multiplexing, which are essential for wearables, medical devices, and robotics. This paper reviews recent progress in active piezoelectric devices. We classify these piezoelectric devices according to the material dimensionality and present physics-based device models to describe and quantify the piezoelectric response for one-dimensional nanowires, emerging two-dimensional materials, and three-dimensional thin films. Different transduction mechanisms and state-of-the-art devices for each type of material are reviewed. Perspectives on the future applications of active piezoelectric devices are discussed.