Cargando…
Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation
IMPORTANCE: Amid an explosion of interest in deep learning in medicine, including within ophthalmology, concerns regarding data privacy, security, and sharing are of increasing importance. A model-to-data approach, in which the model itself is transferred rather than data, can circumvent many of the...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411940/ https://www.ncbi.nlm.nih.gov/pubmed/32761143 http://dx.doi.org/10.1001/jamaophthalmol.2020.2769 |
Sumario: | IMPORTANCE: Amid an explosion of interest in deep learning in medicine, including within ophthalmology, concerns regarding data privacy, security, and sharing are of increasing importance. A model-to-data approach, in which the model itself is transferred rather than data, can circumvent many of these challenges but has not been previously demonstrated in ophthalmology. OBJECTIVE: To determine whether a model-to-data deep learning approach (ie, validation of the algorithm without any data transfer) can be applied in ophthalmology. DESIGN, SETTING, AND PARTICIPANTS: This single-center cross-sectional study included patients with active exudative age-related macular degeneration undergoing optical coherence tomography (OCT) at the New England Eye Center from August 1, 2018, to February 28, 2019. Data were primarily analyzed from March 1 to June 20, 2019. MAIN OUTCOMES AND MEASURES: Training of the deep learning model, using a model-to-data approach, in recognizing intraretinal fluid (IRF) on OCT B-scans. RESULTS: The model was trained (learning curve Dice coefficient, >80%) using 400 OCT B-scans from 128 participants (69 female [54%] and 59 male [46%]; mean [SD] age, 77.5 [9.1] years). In comparing the model with manual human grading of IRF pockets, no statistically significant difference in Dice coefficients or intersection over union scores was found (P > .05). CONCLUSIONS AND RELEVANCE: A model-to-data approach to deep learning applied in ophthalmology avoided many of the traditional hurdles in large-scale deep learning, including data sharing, security, and privacy concerns. Although the clinical relevance of these results is limited at this time, this proof-of-concept study suggests that such a paradigm should be further examined in larger-scale, multicenter deep learning studies. |
---|