Cargando…
Model-to-Data Approach for Deep Learning in Optical Coherence Tomography Intraretinal Fluid Segmentation
IMPORTANCE: Amid an explosion of interest in deep learning in medicine, including within ophthalmology, concerns regarding data privacy, security, and sharing are of increasing importance. A model-to-data approach, in which the model itself is transferred rather than data, can circumvent many of the...
Autores principales: | Mehta, Nihaal, Lee, Cecilia S., Mendonça, Luísa S. M., Raza, Khadija, Braun, Phillip X., Duker, Jay S., Waheed, Nadia K., Lee, Aaron Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411940/ https://www.ncbi.nlm.nih.gov/pubmed/32761143 http://dx.doi.org/10.1001/jamaophthalmol.2020.2769 |
Ejemplares similares
-
Morphological changes in intraretinal microvascular abnormalities after anti-VEGF therapy visualized on optical coherence tomography angiography
por: Sorour, Osama A., et al.
Publicado: (2020) -
Repeatability of binarization thresholding methods for optical coherence tomography angiography image quantification
por: Mehta, Nihaal, et al.
Publicado: (2020) -
Using the Pathophysiology of Dry AMD to Guide Binarization of the Choriocapillaris on OCTA: A Model
por: Braun, Phillip X., et al.
Publicado: (2020) -
Intraretinal Fluid Pattern Characterization in Optical Coherence Tomography Images
por: de Moura, Joaquim, et al.
Publicado: (2020) -
Perioperative intraretinal fluid observed using optical coherence tomography in the epiretinal membrane
por: Lee, Jae Jung, et al.
Publicado: (2020)