Cargando…
Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification
Scene classification relying on images is essential in many systems and applications related to remote sensing. The scientific interest in scene classification from remotely collected images is increasing, and many datasets and algorithms are being developed. The introduction of convolutional neural...
Autores principales: | Petrovska, Biserka, Zdravevski, Eftim, Lameski, Petre, Corizzo, Roberto, Štajduhar, Ivan, Lerga, Jonatan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411945/ https://www.ncbi.nlm.nih.gov/pubmed/32674254 http://dx.doi.org/10.3390/s20143906 |
Ejemplares similares
-
Multi-Horizon Air Pollution Forecasting with Deep Neural Networks
por: Arsov, Mirche, et al.
Publicado: (2021) -
Literature on Applied Machine Learning in Metagenomic Classification: A Scoping Review
por: Tonkovic, Petar, et al.
Publicado: (2020) -
GAN-Based Image Colorization for Self-Supervised Visual Feature Learning
por: Treneska, Sandra, et al.
Publicado: (2022) -
Activities of daily living with motion: A dataset with accelerometer, magnetometer and gyroscope data from mobile devices
por: Pires, Ivan Miguel, et al.
Publicado: (2020) -
Daily motionless activities: A dataset with accelerometer, magnetometer, gyroscope, environment, and GPS data
por: Pires, Ivan Miguel, et al.
Publicado: (2022)