Cargando…
Hierarchical Anomaly Detection Model for In-Vehicle Networks Using Machine Learning Algorithms
The communication and connectivity functions of vehicles increase their vulnerability to hackers. The unintended failure and malfunction of in-vehicle systems caused by external factors threaten the security and safety of passengers. As the controller area network alone cannot protect vehicles from...
Autores principales: | Park, Seunghyun, Choi, Jin-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411977/ https://www.ncbi.nlm.nih.gov/pubmed/32679715 http://dx.doi.org/10.3390/s20143934 |
Ejemplares similares
-
A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
por: Diro, Abebe, et al.
Publicado: (2021) -
Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices
por: Huč, Aleks, et al.
Publicado: (2021) -
Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms
por: Baciu, Vlad-Eusebiu, et al.
Publicado: (2023) -
Network anomaly detection: a machine learning perspective
por: Bhattacharyya, Dhruba Kumar
Publicado: (2013) -
Severity of vehicle-to-vehicle accidents in the UAE: An exploratory analysis using machine learning algorithms
por: Maghelal, Praveen, et al.
Publicado: (2023)