Cargando…
SlimDeblurGAN-Based Motion Deblurring and Marker Detection for Autonomous Drone Landing
Deep learning-based marker detection for autonomous drone landing is widely studied, due to its superior detection performance. However, no study was reported to address non-uniform motion-blurred input images, and most of the previous handcrafted and deep learning-based methods failed to operate wi...
Autores principales: | Truong, Noi Quang, Lee, Young Won, Owais, Muhammad, Nguyen, Dat Tien, Batchuluun, Ganbayar, Pham, Tuyen Danh, Park, Kang Ryoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7411990/ https://www.ncbi.nlm.nih.gov/pubmed/32674485 http://dx.doi.org/10.3390/s20143918 |
Ejemplares similares
-
Restoration of Motion Blurred Image by Modified DeblurGAN for Enhancing the Accuracies of Finger-Vein Recognition
por: Choi, Jiho, et al.
Publicado: (2021) -
Cone-beam CT image quality improvement using Cycle-Deblur consistent adversarial networks (Cycle-Deblur GAN) for chest CT imaging in breast cancer patients
por: Tien, Hui-Ju, et al.
Publicado: (2021) -
An Adaptive Deblurring Vehicle Detection Method for High-Speed Moving Drones: Resistance to Shake
por: Liu, Yan, et al.
Publicado: (2021) -
Blind Deblurring Based on Sigmoid Function
por: Sun, Shuhan, et al.
Publicado: (2021) -
Artificial Intelligence-Based Thyroid Nodule Classification Using Information from Spatial and Frequency Domains
por: Nguyen, Dat Tien, et al.
Publicado: (2019)