Cargando…

Single-Bit, Self-Powered Digital Counter Using a Wiegand Sensor for Rotary Applications

This work explores energy harvesting from rotary motion using a Wiegand sensor, which is a magnetic sensor that induces a voltage pulse when the magnetization is reversed. The main feature of the Wiegand sensor is that a pulse is generated regardless of how slowly magnetism reversal occurs. Self-sus...

Descripción completa

Detalles Bibliográficos
Autores principales: Chotai, Janki, Thakker, Manish, Takemura, Yasushi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412004/
https://www.ncbi.nlm.nih.gov/pubmed/32660120
http://dx.doi.org/10.3390/s20143840
Descripción
Sumario:This work explores energy harvesting from rotary motion using a Wiegand sensor, which is a magnetic sensor that induces a voltage pulse when the magnetization is reversed. The main feature of the Wiegand sensor is that a pulse is generated regardless of how slowly magnetism reversal occurs. Self-sustained sensors play major roles in advancing the Internet of Things (IoT) and wireless sensor networks (WSN). In this study, we identified a linear relationship between rotational motion, magnetic field reversal, and the rotational frequency generated by the Wiegand sensor. In addition, the maximum energy per pulse and its dependence were derived analytically. A maximum energy of 130 nJ per pulse was reported for the sensor used. We developed a single-bit, self-powered digital counter that was sufficiently driven with 38 nJ of energy. In this study, single rotations were measured without the need for external power.