Cargando…
FedMed: A Federated Learning Framework for Language Modeling
Federated learning (FL) is a privacy-preserving technique for training a vast amount of decentralized data and making inferences on mobile devices. As a typical language modeling problem, mobile keyboard prediction aims at suggesting a probable next word or phrase and facilitating the human-machine...
Autores principales: | Wu, Xing, Liang, Zhaowang, Wang, Jianjia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412048/ https://www.ncbi.nlm.nih.gov/pubmed/32708152 http://dx.doi.org/10.3390/s20144048 |
Ejemplares similares
-
OES-Fed: a federated learning framework in vehicular network based on noise data filtering
por: Lei, Yuan, et al.
Publicado: (2022) -
FedAAR: A Novel Federated Learning Framework for Animal Activity Recognition with Wearable Sensors
por: Mao, Axiu, et al.
Publicado: (2022) -
FedMSA: A Model Selection and Adaptation System for Federated Learning
por: Sun, Rui, et al.
Publicado: (2022) -
PerHeFed: A general framework of personalized federated learning for heterogeneous convolutional neural networks
por: Ma, Le, et al.
Publicado: (2022) -
FedDNA: Federated learning using dynamic node alignment
por: Wang, Shuwen, et al.
Publicado: (2023)