Cargando…
Gear Shape Parameter Measurement Using a Model-Based Scanning Multi-Distance Measurement Approach
To reduce wind turbine failures by defective drive trains, deviations in the geometry of large gears (diameter ≳ 1 m) must be extensively determined with single-digit micrometer uncertainties. Fixed measuring volumes limit standard measuring methods like coordinate and gear measuring instruments for...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412203/ https://www.ncbi.nlm.nih.gov/pubmed/32674308 http://dx.doi.org/10.3390/s20143910 |
Sumario: | To reduce wind turbine failures by defective drive trains, deviations in the geometry of large gears (diameter ≳ 1 m) must be extensively determined with single-digit micrometer uncertainties. Fixed measuring volumes limit standard measuring methods like coordinate and gear measuring instruments for large gear measurements. Therefore, a model-based scanning multi-distance measurement approach for gear shape parameters is presented. The measurement approach has a scalable design and consists of a confocal-chromatic sensor, rotary table as a scanning unit and model-based signal processing. A preliminary study on a midsize spur gear demonstrates the general feasibility of the model-based scanning multi-distance measurement approach. As a result, the mean base circle radius as the fundamental gear shape parameter is determined with an uncertainty of <5 μm. The calibration and adjustment of the sensor arrangement were performed with a known calibration gear. Scalability is not experimentally validated in this article. However, simulations verify the scalability of the measurement approach in a first step. For gears with 1 m in diameter and varying tooth flank geometries, the estimated achievable uncertainty of the mean base circle radius is still <5 μm. Therefore, the model-based scanning multi-distance measurement approach is a promising alternative for gear inspection. |
---|