Cargando…

Long-Distance Movement of Mineral Deficiency-Responsive mRNAs in Nicotiana Benthamiana/Tomato Heterografts

Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the ada...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Chao, Huang, Jing, Lan, Hai, Zhang, Cankui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412313/
https://www.ncbi.nlm.nih.gov/pubmed/32664315
http://dx.doi.org/10.3390/plants9070876
Descripción
Sumario:Deficiencies in essential mineral nutrients such as nitrogen (N), phosphorus (P), and iron (Fe) severely limit plant growth and crop yield. It has been discovered that both the local sensing system in roots and shoot-to-root systemic signaling via the phloem are involved in the regulation of the adaptive alterations in roots, in response to mineral deficiency. mRNAs are one group of molecules with systemic signaling functions in response to intrinsic and environmental cues; however, the importance of shoot-to-root mobile mRNAs stimulated by low mineral levels is not fully understood. In this study, we established a Nicotiana benthamiana/tomato heterograft system to identify shoot-to-root mobile mRNAs that are produced in response to low N, P or Fe. Multiple long-distance mobile mRNAs were identified to be associated with low mineral levels and a few of them may play important roles in hormonal metabolism and root architecture alteration. A comparison of the mobile mRNAs from our study with those identified from previous studies showed that very few transcripts are conserved among different species.