Cargando…
Learning Soft Mask Based Feature Fusion with Channel and Spatial Attention for Robust Visual Object Tracking
We propose to improve the visual object tracking by introducing a soft mask based low-level feature fusion technique. The proposed technique is further strengthened by integrating channel and spatial attention mechanisms. The proposed approach is integrated within a Siamese framework to demonstrate...
Autores principales: | Fiaz, Mustansar, Mahmood, Arif, Jung, Soon Ki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412361/ https://www.ncbi.nlm.nih.gov/pubmed/32698339 http://dx.doi.org/10.3390/s20144021 |
Ejemplares similares
-
Improving Object Tracking by Added Noise and Channel Attention
por: Fiaz, Mustansar, et al.
Publicado: (2020) -
Siamese anchor-free object tracking with multiscale spatial attentions
por: Zhang, Jianming, et al.
Publicado: (2021) -
Global Context Attention for Robust Visual Tracking
por: Choi, Janghoon
Publicado: (2023) -
HROM: Learning High-Resolution Representation and Object-Aware Masks for Visual Object Tracking
por: Zhang, Dawei, et al.
Publicado: (2020) -
Spatial–Semantic and Temporal Attention Mechanism-Based Online Multi-Object Tracking
por: Meng, Fanjie, et al.
Publicado: (2020)